Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence

[1]  Ziv Roth,et al.  Survival of mycobacteria depends on proteasome‐mediated amino acid recycling under nutrient limitation , 2014, The EMBO journal.

[2]  Y. Poquet,et al.  Amino acid capture and utilization within the Mycobacterium tuberculosis phagosome. , 2014, Future microbiology.

[3]  A. Charbit,et al.  Asparagine assimilation is critical for intracellular replication and dissemination of Francisella , 2014, Cellular microbiology.

[4]  Gérald Larrouy-Maumus,et al.  Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection , 2014, PLoS pathogens.

[5]  P. V. van Helden,et al.  The Role of Glutamine Oxoglutarate Aminotransferase and Glutamate Dehydrogenase in Nitrogen Metabolism in Mycobacterium bovis BCG , 2013, PLoS ONE.

[6]  Thomas R. Ioerger,et al.  Tryptophan Biosynthesis Protects Mycobacteria from CD4 T-Cell-Mediated Killing , 2013, Cell.

[7]  A. Charbit,et al.  Francisella tularensis intracellular survival: to eat or to die. , 2013, Microbes and infection.

[8]  Alimuddin Zumla,et al.  WHO's 2013 global report on tuberculosis: successes, threats, and opportunities , 2013, The Lancet.

[9]  C. de Chastellier,et al.  Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis , 2013, Infection and Immunity.

[10]  Yinhua Lu,et al.  Nitrogen starvation-induced transcriptome alterations and influence of transcription regulator mutants in Mycobacterium smegmatis , 2013, BMC Research Notes.

[11]  C. Nathan,et al.  Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression , 2013, Proceedings of the National Academy of Sciences.

[12]  Andrzej M. Kierzek,et al.  Systems-Based Approaches to Probing Metabolic Variation within the Mycobacterium tuberculosis Complex , 2013, PloS one.

[13]  Wolfgang Wiechert,et al.  13C-Flux Spectral Analysis of Host-Pathogen Metabolism Reveals a Mixed Diet for Intracellular Mycobacterium tuberculosis , 2013, Chemistry & biology.

[14]  Gérald Larrouy-Maumus,et al.  Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate , 2013, Nature chemical biology.

[15]  Nathaniel J. Moorman,et al.  Francisella tularensis Harvests Nutrients Derived via ATG5-Independent Autophagy to Support Intracellular Growth , 2013, PLoS pathogens.

[16]  E. Rubin,et al.  Feast or famine: the host–pathogen battle over amino acids , 2013, Cellular microbiology.

[17]  J. Rengarajan,et al.  The Intracellular Environment of Human Macrophages That Produce Nitric Oxide Promotes Growth of Mycobacteria , 2013, Infection and Immunity.

[18]  Steven B. Bradfute,et al.  Autophagy as an immune effector against tuberculosis. , 2013, Current opinion in microbiology.

[19]  G. Barton,et al.  Genome wide analysis of the complete GlnR nitrogen-response regulon in Mycobacterium smegmatis , 2013, BMC Genomics.

[20]  M. Bennett,et al.  Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation , 2013, Tuberculosis.

[21]  Joeli Marrero,et al.  Glucose Phosphorylation Is Required for Mycobacterium tuberculosis Persistence in Mice , 2013, PLoS pathogens.

[22]  P. Verma,et al.  Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. , 2012, Cell host & microbe.

[23]  A. Charbit,et al.  Francisella tularensis regulates the expression of the amino acid transporter SLC1A5 in infected THP‐1 human monocytes , 2012, Cellular microbiology.

[24]  M. Giffin,et al.  Mutational Analysis of the Respiratory Nitrate Transporter NarK2 of Mycobacterium tuberculosis , 2012, PloS one.

[25]  C. Rock,et al.  Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. , 2012, Cell host & microbe.

[26]  M. P. Tan,et al.  Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism , 2012, Infection and Immunity.

[27]  P. Thibault,et al.  Quantitative Proteomics Reveals That Only a Subset of the Endoplasmic Reticulum Contributes to the Phagosome* , 2012, Molecular & Cellular Proteomics.

[28]  D. Sarkar,et al.  Nitrate reduction pathways in mycobacteria and their implications during latency. , 2012, Microbiology.

[29]  Thomas Dandekar,et al.  Toward a Systemic Understanding of Listeria monocytogenes Metabolism during Infection , 2011, Front. Microbio..

[30]  M. Niederweis,et al.  Uptake of Sulfate but Not Phosphate by Mycobacterium tuberculosis Is Slower than That for Mycobacterium smegmatis , 2011, Journal of bacteriology.

[31]  I. Rosenshine,et al.  Host Proteasomal Degradation Generates Amino Acids Essential for Intracellular Bacterial Growth , 2011, Science.

[32]  Christopher D. Rithner,et al.  Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. , 2011, Journal of proteome research.

[33]  S. Noack,et al.  13C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation , 2011, PLoS pathogens.

[34]  D. Schnappinger,et al.  Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. , 2011, Trends in microbiology.

[35]  H. Maamar,et al.  Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages , 2011, PLoS pathogens.

[36]  Bo-Young Jeon,et al.  (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. , 2011, Journal of proteome research.

[37]  B. Arulanandam,et al.  Tryptophan Prototrophy Contributes to Francisella tularensis Evasion of Gamma Interferon-Mediated Host Defense , 2011, Infection and Immunity.

[38]  D. Chakravortty,et al.  Cationic Amino Acid Transporters and Salmonella Typhimurium ArgT Collectively Regulate Arginine Availability towards Intracellular Salmonella Growth , 2010, PloS one.

[39]  S. Gandotra,et al.  The Mycobacterium tuberculosis Proteasome Active Site Threonine Is Essential for Persistence Yet Dispensable for Replication and Resistance to Nitric Oxide , 2010, PLoS pathogens.

[40]  J. Sacchettini,et al.  Crystal structures of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein , 2010, Protein science : a publication of the Protein Society.

[41]  Andreas Burkovski,et al.  Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria. , 2010, FEMS microbiology reviews.

[42]  T. Dandekar,et al.  Carbon metabolism of intracellular bacterial pathogens and possible links to virulence , 2010, Nature Reviews Microbiology.

[43]  G. Schoolnik,et al.  Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[44]  T. Jones,et al.  Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. , 2009, Journal of molecular biology.

[45]  Mi‐jeong Kim,et al.  Foamy macrophages and the progression of the human tuberculosis granuloma , 2009, Nature Immunology.

[46]  D. Schnappinger,et al.  Mycobacterial survival strategies in the phagosome: defence against host stresses , 2009, Cellular microbiology.

[47]  Kyle J. Minch,et al.  Hypoxia: a window into Mycobacterium tuberculosis latency , 2009, Cellular microbiology.

[48]  R. Geffers,et al.  The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. , 2009, Microbiology.

[49]  S. Howell,et al.  An Intramolecular Switch Regulates Phosphoindependent FHA Domain Interactions in Mycobacterium tuberculosis , 2009, Science Signaling.

[50]  P. Alzari,et al.  Regulation of glutamate metabolism by protein kinases in mycobacteria , 2008, Molecular microbiology.

[51]  J. Emile,et al.  Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence , 2008, PLoS pathogens.

[52]  S. Ehlers,et al.  Anaerobic arginine metabolism of Mycobacterium tuberculosis is mediated by arginine deiminase (arcA), but is not essential for chronic persistence in an aerogenic mouse model of infection. , 2008, International journal of medical microbiology : IJMM.

[53]  A. Burkovski,et al.  A Genomic View on Nitrogen Metabolism and Nitrogen Control in Mycobacteria , 2008, Journal of Molecular Microbiology and Biotechnology.

[54]  P. Carroll,et al.  Functional Analysis of GlnE, an Essential Adenylyl Transferase in Mycobacterium tuberculosis , 2008, Journal of bacteriology.

[55]  J. Graham,et al.  Glycine Betaine Uptake by the ProXVWZ ABC Transporter Contributes to the Ability of Mycobacterium tuberculosis To Initiate Growth in Human Macrophages , 2008, Journal of bacteriology.

[56]  Christopher M. Sassetti,et al.  Mycobacterial persistence requires the utilization of host cholesterol , 2008, Proceedings of the National Academy of Sciences.

[57]  M. Niederweis,et al.  Nutrient acquisition by mycobacteria. , 2008, Microbiology.

[58]  Philip D. Butcher,et al.  Probing Host Pathogen Cross-Talk by Transcriptional Profiling of Both Mycobacterium tuberculosis and Infected Human Dendritic Cells and Macrophages , 2008, PloS one.

[59]  V. Deretic,et al.  Mechanism of Inducible Nitric Oxide Synthase Exclusion from Mycobacterial Phagosomes , 2007, PLoS pathogens.

[60]  J. Leigh,et al.  Nitrogen regulation in bacteria and archaea. , 2007, Annual review of microbiology.

[61]  T. Parish,et al.  The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis , 2007, Tuberculosis.

[62]  Peter J. Peters,et al.  M. tuberculosis and M. leprae Translocate from the Phagolysosome to the Cytosol in Myeloid Cells , 2007, Cell.

[63]  S. Ehlers,et al.  Oxygen status of lung granulomas in Mycobacterium tuberculosis‐infected mice , 2006, The Journal of pathology.

[64]  M. Hazbón,et al.  Arginine Homeostasis in J774.1 Macrophages in the Context of Mycobacterium bovis BCG Infection , 2006, Journal of bacteriology.

[65]  S. Cole,et al.  Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. , 2005, Journal of molecular biology.

[66]  J. Sauer,et al.  The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  B. Neumeister,et al.  Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5 , 2005, Molecular microbiology.

[68]  D. Sherman,et al.  Adenylylation and Catalytic Properties of Mycobacterium tuberculosis Glutamine Synthetase Expressed in Escherichia coli versus Mycobacteria* , 2004, Journal of Biological Chemistry.

[69]  M. Horwitz,et al.  Glutamine Synthetase GlnA1 Is Essential for Growth of Mycobacterium tuberculosis in Human THP-1 Macrophages and Guinea Pigs , 2003, Infection and Immunity.

[70]  E. Lander,et al.  Human macrophage activation programs induced by bacterial pathogens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Russell,et al.  Mycobacterial persistence: adaptation to a changing environment. , 2001, Trends in microbiology.

[72]  David G. Russell,et al.  Mycobacterium tuberculosis: here today, and here tomorrow , 2001, Nature Reviews Molecular Cell Biology.

[73]  M. Merrick,et al.  PII Signal Transduction Proteins, Pivotal Players in Microbial Nitrogen Control , 2001, Microbiology and Molecular Biology Reviews.

[74]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[75]  Tanya Parish,et al.  glnE Is an Essential Gene inMycobacterium tuberculosis , 2000, Journal of bacteriology.

[76]  J. Content,et al.  The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. , 2000, FEMS microbiology reviews.

[77]  C. Nathan,et al.  Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[78]  N. Connell,et al.  Amino Acid Transport and Metabolism in Mycobacteria: Cloning, Interruption, and Characterization of anl-Arginine/γ-Aminobutyric Acid Permease inMycobacterium bovis BCG , 2000, Journal of bacteriology.

[79]  N. Connell,et al.  A Peptide Permease Mutant of Mycobacterium bovis BCG Resistant to the Toxic Peptides Glutathione andS-Nitrosoglutathione , 2000, Infection and Immunity.

[80]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[81]  J. Mudgett,et al.  Identification of nitric oxide synthase as a protective locus against tuberculosis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Horwitz,et al.  Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction , 1995, Journal of bacteriology.

[83]  R. H. Lyon,et al.  Utilization of Amino Acids During Growth of Mycobacterium tuberculosis in Rotary Cultures , 1970, Infection and immunity.

[84]  Yoshikazu Oka,et al.  Studies on the Metabolism of Mycobacterium tuberculosis , 1957 .

[85]  G. Youmans,et al.  STUDIES ON THE METABOLISM OF MYCOBACTERIUM TUBERCULOSIS II , 1953, Journal of Bacteriology.

[86]  K. Dikshit,et al.  Haemoglobins of Mycobacteria: structural features and biological functions. , 2013, Advances in microbial physiology.