Style Similarity Measure for Video Documents Comparison

We define a style similarity measure for video documents based on the localization of common elements and on the temporal order in which they appear in each document. Common elements for a couple of compared videos are segments presenting similar behaviors on a subset of low or mid level features extracted for the comparison process. We propose a method to compare two video documents and to extract those similar elements using dynamic programming and one-dimensional morphological operations. The similarity measure is applied on TV-news broadcast to illustrate its behavior.

[1]  Ruud M. Bolle,et al.  Feature based indexing for media tracking , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[2]  Dimitrios Gunopulos,et al.  Finding Similar Time Series , 1997, PKDD.

[3]  Cormac Herley,et al.  Extracting repeats from media streams , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[4]  Kyuseok Shim,et al.  Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases , 1995, VLDB.

[5]  Chong-Wah Ngo,et al.  Integrating color and spatial features for content-based video retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[6]  Ambuj K. Singh,et al.  Variable length queries for time series data , 2001, Proceedings 17th International Conference on Data Engineering.

[7]  Wesley W. Chu,et al.  Segment-based approach for subsequence searches in sequence databases , 2001, Comput. Syst. Sci. Eng..

[8]  Thomas S. Huang,et al.  Image processing , 1971 .

[9]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[10]  Shih-Fu Chang,et al.  Learning Hierarchical Hidden Markov Models for Video Structure Discovery , 2003 .

[11]  Regunathan Radhakrishnan,et al.  A time series clustering based framework for multimedia mining and summarization using audio features , 2004, MIR '04.

[12]  Wolfgang Effelsberg,et al.  VisualGREP: a systematic method to compare and retrieve video sequences , 1997, Electronic Imaging.

[13]  Catherine Garbay,et al.  Similarity measure for heterogeneous multivariate time-series , 2004, 2004 12th European Signal Processing Conference.

[14]  Rakesh Mohan,et al.  Video sequence matching , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[15]  Siba Haidar,et al.  The SAMOVA Shot Boundary Detection for TRECVID Evaluation 2004 , 2004, TRECVID.

[16]  Nuno Vasconcelos,et al.  Statistical models of video structure for content analysis and characterization , 2000, IEEE Trans. Image Process..

[17]  Philippe Aigrain,et al.  Medium knowledge-based macro-segmentation of video into sequences , 1997 .

[18]  Eric Bruno,et al.  Prédiction Temporelle de Descripteurs Visuels pour la Mesure de Similarité entre Vidéos , 2003 .

[19]  Eamonn J. Keogh,et al.  Probabilistic discovery of time series motifs , 2003, KDD '03.

[20]  Avideh Zakhor,et al.  Efficient video similarity measurement with video signature , 2003, IEEE Trans. Circuits Syst. Video Technol..

[21]  Jenny Benois-Pineau,et al.  Scene similarity measure for video content segmentation in the framework of a rough indexing paradigm , 2006, Int. J. Intell. Syst..