Detection and structural characterization of nitrosamide H2NNO: A central intermediate in deNOx processes.

The structure and bonding of H2NNO, the simplest N-nitrosamine, and a key intermediate in deNOx processes, have been precisely characterized using a combination of rotational spectroscopy of its more abundant isotopic species and high-level quantum chemical calculations. Isotopic spectroscopy provides compelling evidence that this species is formed promptly in our discharge expansion via the NH2 + NO reaction and is collisionally cooled prior to subsequent unimolecular rearrangement. H2NNO is found to possess an essentially planar geometry, an NNO angle of 113.67(5)°, and a N-N bond length of 1.342(3) Å; in combination with the derived nitrogen quadrupole coupling constants, its bonding is best described as an admixture of uncharged dipolar (H2N-N=O, single bond) and zwitterion (H2N+=N-O-, double bond) structures. At the CCSD(T) level, and extrapolating to the complete basis set limit, the planar geometry appears to represent the minimum of the potential surface, although the torsional potential of this molecule is extremely flat.

[1]  K. Senthilkumar,et al.  Mechanism and Kinetics of the Reaction of Nitrosamines with OH Radical: A Theoretical Study , 2017 .

[2]  J. Gauss,et al.  Exotic SiO(2)H(2) Isomers: Theory and Experiment Working in Harmony. , 2016, The journal of physical chemistry letters.

[3]  J. Stanton,et al.  Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures. , 2016, The Journal of chemical physics.

[4]  D. Fino,et al.  Catalysis in Diesel engine NOx aftertreatment: a review , 2015 .

[5]  J. Stanton,et al.  Relatively Selective Production of the Simplest Criegee Intermediate in a CH4/O2 Electric Discharge: Kinetic Analysis of a Plausible Mechanism. , 2015, The journal of physical chemistry. A.

[6]  Branko Ruscic,et al.  Uncertainty quantification in thermochemistry, benchmarking electronic structure computations, and Active Thermochemical Tables , 2014 .

[7]  Jun Li,et al.  High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH2OO). , 2014, The journal of physical chemistry letters.

[8]  S. Novick,et al.  Detection of nitrogen-protonated nitrous oxide (HNNO+) by rotational spectroscopy. , 2013, The journal of physical chemistry. A.

[9]  B. Ruscic,et al.  Improved accuracy benchmarks of small molecules using correlation consistent basis sets , 2013, Theoretical Chemistry Accounts.

[10]  S. A. do Monte,et al.  Ab initio and DFT conformational study on nitrosamine (H2N–N=O) and N-Nitrosodimethylamine [(CH3)2N–N=O] , 2011 .

[11]  James A. Miller,et al.  The Role of NNH in NO Formation and Control , 2011 .

[12]  H. Gupta,et al.  Rotational Spectra of the Carbon Chain Negative Ions C4H– and C8H– , 2007 .

[13]  H. Roohi,et al.  Evaluation of the origin of rotational barrier in NH2X (X = NO, NS) , 2006 .

[14]  J. F. Garvey,et al.  Nitrosamide, (H2NNO), formation within [(NO)m(NH3)n]+ clusters: Theory and experiment , 2006 .

[15]  M. Jacox,et al.  Infrared spectra of NH2NO, NH2NO+, and NNOH+ and of the N2...H2O complex trapped in solid neon. , 2005, The Journal of chemical physics.

[16]  Y. Endo,et al.  Spectroscopy of Ar-SH and Ar-SD. I. Observation of rotation-vibration transitions of a van der Waals mode by double-resonance spectroscopy. , 2005, The Journal of chemical physics.

[17]  James B. Adams,et al.  Molecular Origins of Selectivity in the Reduction of NOx by NH3 , 2004 .

[18]  P. Thaddeus,et al.  Geometrical structure of monobridged disilyene Si(H)SiH , 2003 .

[19]  H. Piotrowski,et al.  Experimental and Theoretical Study on the Structure of Nitramide H2NNO2 , 2002 .

[20]  S. Inagaki,et al.  Structural features of aliphatic N-nitrosamines of 7-azabicyclo[2.2.1]heptanes that facilitate N-NO bond cleavage. , 2001, Journal of the American Chemical Society.

[21]  S. Klippenstein,et al.  A direct transition state theory based analysis of the branching in NH2 + NO. , 2001, Faraday discussions.

[22]  P. Thaddeus,et al.  Microwave Spectra of 11 Polyyne Carbon Chains , 2000 .

[23]  A. Apponi,et al.  The rotational spectra of the HCCCNH+, NCCNH+, and CH3CNH+ ions , 2000 .

[24]  T. Ohwada,et al.  Influence of structure on N–NO bond cleavage of aliphatic N-nitrosamines† , 2000 .

[25]  James A. Miller,et al.  Theoretical Considerations in the NH2 + NO Reaction , 2000 .

[26]  A. Apponi,et al.  Laboratory Detection of Four New Cumulene Carbenes: H2C7, H2C8, H2C9, and D2C10 , 2000 .

[27]  T. Hamilton,et al.  Ab Initio Calculation of the Heats of Formation of Nitrosamides: Comparison with Nitramides , 1999 .

[28]  J. Grabow,et al.  Rotational spectra of the carbon chain free radicals C10H, C12H, C13H, and C14H , 1998 .

[29]  Sonia Coriani,et al.  The molecular electric quadrupole moment of N2 , 1998 .

[30]  L. A. Baker,et al.  An ab initio molecular orbital study of the reaction NH2+NO → H2+N2O , 1998 .

[31]  J. Grabow,et al.  Laboratory Detection of the Carbon Chains HC15N and HC17N , 1998 .

[32]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[33]  P. Thaddeus,et al.  Eight New Carbon Chain Molecules , 1997 .

[34]  F. Hegelund,et al.  Experimental and ab initio equilibrium structure of trans-diazene HNNH , 1997 .

[35]  J. L. Durant,et al.  A Comprehensive Study of the Reaction NH2 + NO → Products: Reaction Rate Coefficients, Product Branching Fractions, and ab Initio Calculations , 1997 .

[36]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[37]  Sean C. Smith,et al.  Theoretical investigation of the potential energy surface for the NH2+NO reaction via density functional theory and ab initio molecular electronic structure theory , 1997 .

[38]  D. Jacob,et al.  Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin , 1996 .

[39]  Sean C. Smith,et al.  Temperature Dependence of Rate Coefficients and Branching Ratios for the NH2 + NO Reaction via Microcanonical Variational Transition State Theory , 1996 .

[40]  J. Park,et al.  Direct Determination of Product Branching for the NH2 + NO Reaction at Temperatures between 302 and 1060 K , 1996 .

[41]  James A. Miller Theory and modeling in combustion chemistry , 1996 .

[42]  T. Oka On negative inertial defect , 1995 .

[43]  W. Jäger,et al.  Microwave-millimeter-wave double resonance experiments on Ar-CO , 1995 .

[44]  Tao Yu,et al.  Kinetics of the NH2 + NO Reaction: Effects of Temperature on the Total Rate Constant and the OH/H2O Branching Ratio , 1994 .

[45]  S. Walch Theoretical characterization of the reaction NH2+NO - products , 1993 .

[46]  R. Curl,et al.  Branching ratio of the reaction amidogen + nitric oxide at elevated temperatures , 1993 .

[47]  Winter,et al.  High-resolution quantum-beat and rf resonance spectroscopy after grazing-ion-surface scattering and its application in studies of the hyperfine structure of stable terms in 14N I, II, and III. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[48]  D. Sülzle,et al.  Cationic and neutral nitrosamide : viable molecules in the dilute gas phase , 1992 .

[49]  A R Tricker,et al.  Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. , 1991, Mutation research.

[50]  J. Sodeau,et al.  Production and detection of nitrosamide in low-temperature matrixes , 1990 .

[51]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[52]  J. K. Lin,et al.  Nitrosamines as potential environmental carcinogens in man. , 1990, Clinical biochemistry.

[53]  O. Sarkisov,et al.  On the reaction of the NH 2 radical with NO at 295-620 K , 1989 .

[54]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[55]  J. Wolfrum,et al.  Kinetic measurements and product branching ratio for the reaction NH2+NO AT 294–1027 K , 1989 .

[56]  G. I. Gellene,et al.  Observation of dissociative and radiative states of N2H by neutralized ion beam techniques , 1989 .

[57]  J. E. Hardy,et al.  Discovery and development of the thermal DeNOx process , 1986 .

[58]  J. A. Harrison,et al.  The structure and vibrational frequencies of NH2NO , 1986 .

[59]  S. P. Harris,et al.  Kinetics of NH/sub 3/-NO reactions on vanadium oxide catalysts , 1984 .

[60]  A. N. Syverud,et al.  JANAF Thermochemical Tables, 1982 Supplement , 1982 .

[61]  W. Goddard,et al.  ENERGETICS AND MECHANISMS FOR REACTIONS INVOLVING NITROSAMIDE, HYDROXYDIAZENES, AND DIIMIDE N-OXIDES , 1982 .

[62]  K. Kohata,et al.  Molecular structure of hydrazine as studied by gas electron diffraction , 1982 .

[63]  S. Hecht,et al.  N-nitrosamines: environmental occurrence, in vivo formation and metabolism. , 1982, Journal of toxicology. Clinical toxicology.

[64]  James A. Miller,et al.  A chemical kinetic model for the selective reduction of nitric oxide by ammonia , 1981 .

[65]  G. Digenis,et al.  Some biochemical aspects of N-nitroso compounds , 1979 .

[66]  R. Lyon The NH3-NO-O2 reaction , 1976 .

[67]  K. Casleton,et al.  Beam maser measurements of hyperfine structure in 14N2O , 1975 .

[68]  B. Krebs,et al.  Kristallstruktur des N‐Nitrosodimethylamins , 1975 .

[69]  P. Rademacher,et al.  Elektronenbeugungs-Untersuchung der Struktur des Dimethylnitrosamins, (CH3)2NNO. , 1969 .

[70]  W. D. Phillips,et al.  Nuclear Magnetic Resonance and Infrared Study of Hindered Rotation in Nitrosamines , 1957 .