Problems in Discrete and Combinatorial Geometry
暂无分享,去创建一个
[1] On Partitions of an Equilateral Triangle , 1967, Canadian Journal of Mathematics.
[2] Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .
[3] Noga Alon,et al. The maximum size of a convex polygon in a restricted set of points in the plane , 1989, Discret. Comput. Geom..
[4] W. T. Tutte,et al. Squaring the Square , 1950, Canadian Journal of Mathematics.
[5] J. Seidel. Graphs and two-distance sets , 1981 .
[6] P. Federico. Some simple perfect 2×1 rectangles , 1970 .
[7] F. Levi. Überdeckung eines Eibereiches durch Parallelverschiebung seines offenen Kerns , 1955 .
[8] Boris V. Dekster. Diameters of the pieces in Borsuk's covering , 1989 .
[9] A. Seidenberg,et al. A Simple Proof of a Theorem of Erdös and Szekeres , 1959 .
[10] P. Erdös. On Sets of Distances of n Points , 1946 .
[11] W. Bonnice,et al. On Convex Polygons Determined by a Finite Planar Set , 1974 .
[12] Peter Ungar,et al. 2N Noncollinear Points Determine at Least 2N Directions , 1982, J. Comb. Theory, Ser. A.
[13] Marek Lassak. Solution of Hadwiger's Covering Problem for Centrally Symmetric Convex Bodies in E3 , 1984 .
[14] Über die Zerstückung eines Eikörpers , 1948 .
[16] N. Kazarinoff,et al. On existence of compound perfect squared squares of small order , 1973 .
[17] Heiko Harborth. Konvexe Fünfecke in ebenen Punktmengen. , 1978 .
[18] James B. Shearer,et al. Tiling rectangles with rectangles , 1982 .
[19] Aart Blokhuis. A New Upper Bound for The Cardinality of 2-Distance Sets in Euclidean Space , 1981 .
[20] P. J. Federico. THE NUMBER OF POLYHEDRA , 1975 .
[22] Nicholas D. Kazarinoff,et al. Squaring Rectangles and Squares , 1973 .
[23] S. K. Stein,et al. Equidissections of polygons , 1990, Discret. Math..
[24] P. Révész,et al. Zum Borsukschen Zerteilungsproblem , 1956 .
[25] O. Schramm. Illuminating Sets of Constant Width , 1988 .
[26] Joseph Malkevitch. TILING CONVEX POLYGONS WITH EQUILATERAL TRIANGLES AND SQUARES , 1985 .
[27] Ludwig Danzer,et al. Three-dimensional analogs of the planar penrose tilings and quasicrystals , 1989, Discret. Math..
[28] Sherman K. Stein. Equidissections of centrally symmetric octagons , 1989 .
[29] B. Grünbaum. A simple proof of Borsuk's conjecture in three dimensions , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] P. Duchet,et al. Sous Les Pavés , 1983 .
[31] R. J. M. Dawson. On Filling Space with Different Integer Cubes , 1984, J. Comb. Theory, Ser. A.
[32] J. Kahn,et al. A counterexample to Borsuk's conjecture , 1993, math/9307229.
[33] C. A. Rogers. Symmetrical sets of constant width and their partitions , 1971 .
[34] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[35] J. Bólyai,et al. SOME APPLICATIONS OF GRAPH THEORY AND COMBINATORIAL METHODS TO NUMBER THEORY AND GEOMETRY , 1978 .
[36] Borsuk's covering for blunt bodies , 1988 .
[37] P. Scott. On the Sets of Directions Determined by n Points , 1970 .
[38] E. A. Kasimatis. Dissections of regular polygons into triangles of equal areas , 1989, Discret. Comput. Geom..
[39] Tibor Bisztriczky,et al. Convexly independent sets , 1990, Comb..
[40] Ilona Palásti. A distance problem of P. Erdös with some further restrictions , 1989, Discret. Math..
[41] W. T. Tutte. The Quest of the Perfect Square , 1965 .
[42] Thomas W. Cusick,et al. View-Obstruction Problems in n-Dimensional Geometry , 1974, J. Comb. Theory, Ser. A.
[43] Richard Pollack,et al. On the Combinatorial Classification of Nondegenerate Configurations in the Plane , 1980, J. Comb. Theory, Ser. A.
[44] H. Eggleston. Covering a Three‐Dimensional set with Sets of Smaller Diameter , 1955 .
[45] John Thomas. A Dissection Problem , 1968 .
[46] Zalman Usiskin,et al. Can Every Triangle Be Divided into n Triangles Similar to It , 1970 .
[47] H. Hadwiger. Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1945 .
[48] Ronald L. Graham. Fault-free Tilings of Rectangles , 1981 .
[49] Joseph Malkevitch. 3‐VALENT 3‐POLYTOPES WITH FACES HAVING FEWER THAN 7 EDGES , 1970 .
[50] John K. Williams,et al. Rep-tiling for triangles , 1991, Discret. Math..
[51] P. Erdös. PROBLEMS AND RESULTS IN COMBINATORIAL GEOMETRY a , 1985 .
[52] Noga Alon,et al. Covering a square by small perimeter rectangles , 1986, Discret. Comput. Geom..
[53] Paul Monsky. On Dividing A Square Into Triangles , 1970 .
[54] Arie Bialostocki,et al. Some notes on the Erdös-Szekeres theorem , 1990, Discret. Math..
[55] J. J. Seidel,et al. On Two-Distance Sets in Euclidean Space , 1977 .
[56] Covering a plane convex body by four homothetical copies with the smallest positive ratio , 1986 .
[57] Raul Cordovil,et al. The directions determined by n points in the plane: a matroidal generalization , 1983, Discret. Math..
[59] Paul Erdös. Some new problems and results in Graph Theory and other branches of Combinatorial Mathematics , 1981 .
[60] I. Bárány,et al. Empty Simplices in Euclidean Space , 1987, Canadian Mathematical Bulletin.
[61] George B. Purdy,et al. The Directions Determined by n Points in the Plane , 1979 .
[62] Peter J. Robinson. Fault-free rectangles tiled with rectangular polyominoes , 1982 .
[63] David Gale,et al. On inscribing $n$-dimensional sets in a regular $n$-simplex , 1953 .
[64] A. Meir,et al. On empty triangles determined by points in the plane , 1988 .
[65] SOLUTION OF HADWIGER'S PROBLEM FOR A CLASS OF CONVEX BODIES , 1991 .
[66] Robert E. Jamison,et al. Planar configurations which determine few slopes , 1984 .
[67] W. T. Tutte. The dissection of equilateral triangles into equilateral triangles , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.
[68] H. Lenz. Zur Zerlegung von Punktmengen in solche kleineren Durchmessers , 1955 .
[69] M. Laczkovich. Tilings of polygons with similar triangles , 1990, Comb..
[70] Robert E. Jamison. Direction trees , 1987, Discret. Comput. Geom..
[71] Paul Erdös,et al. A problem of Leo Moser about repeated distances on the sphere , 1989 .
[72] A. J. W. Duijvestijn,et al. Simple perfect squared square of lowest order , 1978, J. Comb. Theory, Ser. B.
[73] K. Bezdek,et al. Hadwiger-Levi’s Covering Problem Revisited , 1993 .
[74] Leo Moser,et al. On The Different Distances Determined By n Points , 1952 .
[75] Jasper Dale Skinner. Uniquely squared squares of a common reduced side and order , 1992, J. Comb. Theory, Ser. B.
[76] J. Horton. Sets with No Empty Convex 7-Gons , 1983, Canadian Mathematical Bulletin.
[77] Scott Johnson. A new proof of the Erdos-Szekeres convex k-gon result , 1986, J. Comb. Theory, Ser. A.
[78] Tibor Bisztriczky,et al. Nine convex sets determine a pentagon with convex sets as vertices , 1989 .
[79] R. Sprague. Beispiel einer Zerlegung des Quadrats in lauter verschiedene Quadrate , 1939 .
[80] M. Dehn. Über Zerlegung von Rechtecken in Rechtecke , 1903 .
[81] Marek Lassak. Covering the boundary of a convex set by tiles , 1988 .
[82] Robert E. Jamison,et al. A SURVEY OF THE SLOPE PROBLEM , 1985 .
[83] C. Bouwkamp,et al. Tables relating to simple squared rectangles of orders nine through fifteen , 1961 .
[84] Paul Erdös,et al. Some Old and New Problems in Combinatorial Geometry , 1984 .
[85] H. T. Croft. 9-Point and 7-Point Configurations in 3-Space , 1962 .
[86] H. Hadwiger. Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers , 1946 .
[87] A. Clivio. Tilings of a torus with rectangular boxes , 1991, Discret. Math..
[88] W. T. Tutte,et al. The Dissection of Rectangles Into Squares , 1940 .
[89] J. Seidel,et al. Spherical codes and designs , 1977 .