Buildup of spatial information over time and across eye-movements

To interact rapidly and effectively with our environment, our brain needs access to a neural representation of the spatial layout of the external world. However, the construction of such a map poses major challenges, as the images on our retinae depend on where the eyes are looking, and shift each time we move our eyes, head and body to explore the world. Research from many laboratories including our own suggests that the visual system does compute spatial maps that are anchored to real-world coordinates. However, the construction of these maps takes time (up to 500ms) and also attentional resources. We discuss research investigating how retinotopic reference frames are transformed into spatiotopic reference-frames, and how this transformation takes time to complete. These results have implications for theories about visual space coordinates and particularly for the current debate about the existence of spatiotopic representations.

[1]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[2]  G. Westheimer Eye movement responses to a horizontally moving visual stimulus. , 1954, A.M.A. archives of ophthalmology.

[3]  Maria Concetta Morrone,et al.  Visual mislocalization during saccade sequences , 2014, Experimental Brain Research.

[4]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[5]  Julie D. Golomb,et al.  Attention doesn’t slide: spatiotopic updating after eye movements instantiates a new, discrete attentional locus , 2011, Attention, perception & psychophysics.

[6]  Leslie Eastman,et al.  The Book of Optics , 2015 .

[7]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[8]  Bruce Bridgeman,et al.  Complementary Cognitive and Motor Image Processing , 1991 .

[9]  P. Wenderoth,et al.  Retinotopic encoding of the direction aftereffect , 2008, Vision Research.

[10]  M Concetta Morrone,et al.  Neural mechanisms for timing visual events are spatially selective in real-world coordinates , 2007, Nature Neuroscience.

[11]  Maria Concetta Morrone,et al.  Constructing Stable Spatial Maps of the Word , 2012, Perception.

[12]  M. Banks,et al.  How does saccade adaptation affect visual perception? , 2008, Journal of vision.

[13]  Eckart Zimmermann,et al.  Spatial Position Information Accumulates Steadily over Time , 2013, The Journal of Neuroscience.

[14]  P. Cavanagh,et al.  The gender-specific face aftereffect is based in retinotopic not spatiotopic coordinates across several natural image transformations. , 2009, Journal of vision.

[15]  H. Helmholtz Handbuch der physiologischen Optik , 2015 .

[16]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[17]  Zoe Kourtzi,et al.  Spatiotemporal characteristics of form analysis in the human visual cortex revealed by rapid event-related fMRI adaptation , 2005, NeuroImage.

[18]  Eckart Zimmermann,et al.  The reference frames in saccade adaptation. , 2013, Journal of neurophysiology.

[19]  J. Theeuwes,et al.  Gradual Remapping Results in Early Retinotopic and Late Spatiotopic Inhibition of Return , 2010, Psychological science.

[20]  Yves Rossetti,et al.  Implicit Short-Lived Motor Representations of Space in Brain Damaged and Healthy Subjects , 1998, Consciousness and Cognition.

[21]  H. Honda Perceptual localization of visual stimuli flashed during saccades , 1989, Perception & psychophysics.

[22]  D. Pélisson,et al.  Sensorimotor adaptation of saccadic eye movements , 2010, Neuroscience & Biobehavioral Reviews.

[23]  Julie D. Golomb,et al.  Attentional Facilitation throughout Human Visual Cortex Lingers in Retinotopic Coordinates after Eye Movements , 2010, The Journal of Neuroscience.

[24]  D. Burr,et al.  Spatiotopic selectivity of BOLD responses to visual motion in human area MT , 2007, Nature Neuroscience.

[25]  P. Cavanagh,et al.  Perifoveal spatial compression. , 2013, Journal of vision.

[26]  Derek H. Arnold,et al.  Spatially Localized Distortions of Event Time , 2006, Current Biology.

[27]  M. Goodale,et al.  Two visual systems re-viewed , 2008, Neuropsychologia.

[28]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[29]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[30]  Jan Theeuwes,et al.  A reinvestigation of the reference frame of the tilt-adaptation aftereffect , 2013, Scientific Reports.

[31]  Julie D. Golomb,et al.  The Native Coordinate System of Spatial Attention Is Retinotopic , 2008, The Journal of Neuroscience.

[32]  David Burr,et al.  Spatiotopic perceptual maps in humans: evidence from motion adaptation , 2012, Proceedings of the Royal Society B: Biological Sciences.

[33]  Maria Concetta Morrone,et al.  Spatiotopic neural representations develop slowly across saccades , 2013, Current Biology.

[34]  David C. Burr,et al.  Spatiotopic Coding of BOLD Signal in Human Visual Cortex Depends on Spatial Attention , 2011, PloS one.

[35]  P Fattori,et al.  Parietal neurons encoding visual space in a head-frame of reference. , 1992, Bollettino della Societa italiana di biologia sperimentale.

[36]  Markus Lappe,et al.  Eye Position Effects in Oculomotor Plasticity and Visual Localization , 2011, The Journal of Neuroscience.

[37]  M. Lappe,et al.  Eye position effects in saccadic adaptation. , 2011, Journal of neurophysiology.

[38]  Trafton Drew,et al.  Remapping attention in multiple object tracking , 2011, Vision Research.

[39]  A. Fuchs,et al.  The characteristics and neuronal substrate of saccadic eye movement plasticity , 2004, Progress in Neurobiology.

[40]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[41]  M. Lappe,et al.  Motor signals in visual localization. , 2010, Journal of vision.

[42]  P. E. Hallett,et al.  Saccadic eye movements towards stimuli triggered by prior saccades , 1976, Vision Research.

[43]  P. McGraw,et al.  The segregation and integration of colour in motion processing revealed by motion after-effects , 2006, Proceedings of the Royal Society B: Biological Sciences.

[44]  Denis Pélisson,et al.  Eye position specificity of saccadic adaptation. , 2004, Investigative ophthalmology & visual science.

[45]  M. Concetta Morrone,et al.  Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[46]  P Dassonville,et al.  Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates , 1992, Visual Neuroscience.

[47]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[48]  Patrick Cavanagh,et al.  The reference frame of the tilt aftereffect. , 2011, Journal of vision.

[49]  M. Schlag-Rey,et al.  Through the eye, slowly; Delays and localization errors in the visual system , 2002, Nature Reviews Neuroscience.

[50]  D. Burr,et al.  Selective depression of motion sensitivity during saccades. , 1982, The Journal of physiology.

[51]  Avishai Henik,et al.  Attending to the thalamus: inhibition of return and nasal‐temporal asymmetry in the pulvinar , 2002, Neuroreport.

[52]  Matthew D. Hilchey,et al.  Oculomotor inhibition of return: How soon is it “recoded” into spatiotopic coordinates? , 2012, Attention, Perception, & Psychophysics.

[53]  S. C. Mclaughlin Parametric adjustment in saccadic eye movements , 1967 .

[54]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[55]  E. Zohary,et al.  Rapid Formation of Spatiotopic Representations As Revealed by Inhibition of Return , 2010, The Journal of Neuroscience.

[56]  J. Vercher,et al.  Mechanisms of short-term saccadic adaptation. , 1989, Journal of experimental psychology. Human perception and performance.

[57]  G. Fink,et al.  Spatiotopic representations emerge from remapped activity in early visual areas , 2014 .

[58]  J. Bisley,et al.  Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. , 2009, Journal of neurophysiology.

[59]  Maria Concetta Morrone,et al.  Spatiotopic Visual Maps Revealed by Saccadic Adaptation in Humans , 2011, Current Biology.

[60]  Kun Luo,et al.  Visualization of vortex shedding and particle dispersion in two-phase plate wake , 2005, J. Vis..

[61]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[62]  C. Sherrington OBSERVATIONS ON THE SENSUAL RÔLE OF THE PROPRIOCEPTIVE NERVE-SUPPLY OF THE EXTRINSIC OCULAR MUSCLES , 1918 .

[63]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[64]  B. Bridgeman,et al.  Postsaccadic target blanking prevents saccadic suppression of image displacement , 1996, Vision Research.

[65]  Tatsuto Takeuchi,et al.  The reference frame of visual motion priming depends on underlying motion mechanisms. , 2014, Journal of vision.

[66]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[67]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[68]  D. Pélisson,et al.  Adaptation of scanning saccades co-occurs in different coordinate systems. , 2014, Journal of neurophysiology.

[69]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.