A Generalization of Some Huang-Johnson Semifields

In [H. Huang, N.L. Johnson: Semifield planes of order $8^2$, Discrete Math. , 80 (1990)], the authors exhibited seven sporadic semifields of order $2^6$, with left nucleus ${\mathbb F}_{2^3}$ and center ${\mathbb F}_2$. Following the notation of that paper, these examples are referred as the Huang–Johnson semifields of type $II$, $III$, $IV$, $V$, $VI$, $VII$ and $VIII$. In [N. L. Johnson, V. Jha, M. Biliotti: Handbook of Finite Translation Planes , Pure and Applied Mathematics, Taylor Books, 2007], the question whether these semifields are contained in larger families, rather then sporadic, is posed. In this paper, we first prove that the Huang–Johnson semifield of type $VI$ is isotopic to a cyclic semifield, whereas those of types $VII$ and $VIII$ belong to infinite families recently constructed in [N.L. Johnson, G. Marino, O. Polverino, R. Trombetti: Semifields of order $q^6$ with left nucleus ${\mathbb F}_{q^3}$ and center ${\mathbb F}_q$, Finite Fields Appl. , 14 (2008)] and [G.L. Ebert, G. Marino, O. Polverino, R. Trombetti: Infinite families of new semifields, Combinatorica , 6 (2009)]. Then, Huang–Johnson semifields of type $II$ and $III$ are extended to new infinite families of semifields of order $q^6$, existing for every prime power $q$.

[1]  J. Ranilla,et al.  Classification of 64-element finite semifields , 2008, 0807.2994.

[2]  Leonard Eugene Dickson Linear algebras in which division is always uniquely possible , 1906 .

[3]  Julian West,et al.  Generating trees and forbidden subsequences , 1996, Discret. Math..

[4]  L. Storme,et al.  Current Research Topics on Galois Geometry , 2011 .

[5]  Norman L. Johnson,et al.  Translation planes of large dimension admitting nonsolvable groups , 1992 .

[6]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..

[7]  Giuseppe Marino,et al.  Infinite families of new semifields , 2009, Comb..

[8]  Aart Blokhuis,et al.  Finite Geometries , 2018, Des. Codes Cryptogr..

[9]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[10]  Emeric Deutsch,et al.  An involution on Dyck paths and its consequences , 1999, Discret. Math..

[11]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[12]  Erwin Kleinfeld Techniques for Enumerating Veblen-Wedderburn Systems , 1960, JACM.

[13]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[14]  Igor Pak,et al.  Bijections for refined restricted permutations , 2004, J. Comb. Theory, Ser. A.

[15]  José Ranilla,et al.  Classification of semifields of order 64 , 2009 .

[16]  Giuseppe Marino,et al.  Translation dual of a semifield , 2008, J. Comb. Theory, Ser. A.

[17]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[18]  D. Knuth Finite semifields and projective planes , 1965 .

[19]  Richard P. Stanley,et al.  Some Combinatorial Properties of Schubert Polynomials , 1993 .

[20]  Semifield Planes of Order 81 , 2008 .

[21]  KleinfeldErwin Techniques for Enumerating Veblen-Wedderburn Systems , 1960 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Norman L. Johnson,et al.  Handbook of Finite Translation Planes , 2007 .

[24]  M. Moisio,et al.  Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm , 2007, 0706.2112.

[25]  Olga Polverino,et al.  Semifield planes of order q4 with kernel Fq2 and center Fq , 2006, Eur. J. Comb..

[26]  Emeric Deutsch,et al.  Dyck paths : generalities and terminology , 2003 .

[27]  G. Lunardon Translation ovoids , 2003 .