An application of stereo matching algorithm based on transfer learning on robots in multiple scenes

[1]  M. Fanni,et al.  Agricultural Robot-Centered Recognition of Early-Developmental Pest Stage Based on Deep Learning: A Case Study on Fall Armyworm (Spodoptera frugiperda) , 2023, Sensors.

[2]  P. Schnable,et al.  Field‐based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks , 2023, Journal of Field Robotics.

[3]  Seungbo Shim,et al.  Remote robotic system for 3D measurement of concrete damage in tunnel with ground vehicle and manipulator , 2023, Comput. Aided Civ. Infrastructure Eng..

[4]  Pierre-Yves Lajoie,et al.  Swarm-SLAM: Sparse Decentralized Collaborative Simultaneous Localization and Mapping Framework for Multi-Robot Systems , 2023, IEEE Robotics and Automation Letters.

[5]  Jiayi Li,et al.  WHU-OHS: A benchmark dataset for large-scale Hersepctral Image classification , 2022, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Y. S. Heo,et al.  Efficient Multi-Scale Stereo-Matching Network Using Adaptive Cost Volume Filtering , 2022, Italian National Conference on Sensors.

[7]  Huayan Pu,et al.  A novel stereo image self-inpainting network for autonomous robots , 2022, Robotics Auton. Syst..

[8]  Haoqiang Fan,et al.  Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Junda Cheng,et al.  Attention Concatenation Volume for Accurate and Efficient Stereo Matching , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Yuchao Dai,et al.  Rethinking Training Strategy in Stereo Matching , 2022, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Yiguang Liu,et al.  A comprehensive survey: Image deraining and stereo-matching task-driven performance analysis , 2021, IET Image Processing.

[12]  Jeremy Ma,et al.  A Learned Stereo Depth System for Robotic Manipulation in Homes , 2021, IEEE Robotics and Automation Letters.

[13]  Wei Chen,et al.  MPANET: Multi-Scale Pyramid Aggregation Network For Stereo Matching , 2021, 2021 IEEE International Conference on Image Processing (ICIP).

[14]  Zhiyu Xiang,et al.  PGNet: Panoptic parsing guided deep stereo matching , 2021, Neurocomputing.

[15]  Xiaorong Gao,et al.  Domain-adaptive modules for stereo matching network , 2021, Neurocomputing.

[16]  Nadia Kanwal,et al.  A Survey of Modern Deep Learning based Object Detection Models , 2021, Digit. Signal Process..

[17]  Yuchao Dai,et al.  CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Dong Li,et al.  Probabilistic Multi-View Fusion of Active Stereo Depth Maps for Robotic Bin-Picking , 2021, IEEE Robotics and Automation Letters.

[19]  Rui Fan,et al.  PVStereo: Pyramid Voting Module for End-to-End Self-Supervised Stereo Matching , 2021, IEEE Robotics and Automation Letters.

[20]  W. Chen,et al.  Multi-Scale Cost Volumes Cascade Network for Stereo Matching , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Huaici Zhao,et al.  RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving , 2020, AAAI.

[22]  Bin Wu,et al.  Three‐dimensional face modeling technology based on 5G virtual reality binocular stereo vision , 2020, Int. J. Commun. Syst..

[23]  Mehrtash Harandi,et al.  Hierarchical Neural Architecture Search for Deep Stereo Matching , 2020, NeurIPS.

[24]  S. Izadi,et al.  HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Bo Li,et al.  NLCA-Net: a non-local context attention network for stereo matching , 2020, APSIPA Transactions on Signal and Information Processing.

[26]  Bin Liu,et al.  Attention Aggregation Encoder-Decoder Network Framework for Stereo Matching , 2020, IEEE Signal Processing Letters.

[27]  Juyong Zhang,et al.  AANet: Adaptive Aggregation Network for Efficient Stereo Matching , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Shaohuai Shi,et al.  FADNet: A Fast and Accurate Network for Disparity Estimation , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Ruigang Yang,et al.  Domain-invariant Stereo Matching Networks , 2019, ECCV.

[30]  Lili Ju,et al.  Semantic Stereo Matching With Pyramid Cost Volumes , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[31]  Michael Happold,et al.  Hierarchical Deep Stereo Matching on High-Resolution Images , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Xiaogang Wang,et al.  Group-Wise Correlation Stereo Network , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Xu Zhao,et al.  EdgeStereo: An Effective Multi-task Learning Network for Stereo Matching and Edge Detection , 2019, International Journal of Computer Vision.

[34]  Yong Zhao,et al.  Multi-Scale Context Attention Network for Stereo Matching , 2019, IEEE Access.

[35]  Ruigang Yang,et al.  Learning Depth with Convolutional Spatial Propagation Network , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Williem,et al.  Deep self-guided cost aggregation for stereo matching , 2018, Pattern Recognit. Lett..

[37]  Zhidong Deng,et al.  SegStereo: Exploiting Semantic Information for Disparity Estimation , 2018, ECCV.

[38]  François Fleuret,et al.  Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching , 2018, NeurIPS.

[39]  Yong-Sheng Chen,et al.  Pyramid Stereo Matching Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Ruigang Yang,et al.  The ApolloScape Open Dataset for Autonomous Driving and Its Application , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Wei Chen,et al.  Learning for Disparity Estimation Through Feature Constancy , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[42]  Gang Sun,et al.  Squeeze-and-Excitation Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Hongdong Li,et al.  Self-Supervised Learning for Stereo Matching with Self-Improving Ability , 2017, ArXiv.

[44]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[45]  Alex Kendall,et al.  End-to-End Learning of Geometry and Context for Deep Stereo Regression , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[46]  Raquel Urtasun,et al.  Efficient Deep Learning for Stereo Matching , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Thomas Brox,et al.  A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Andreas Geiger,et al.  Displets: Resolving stereo ambiguities using object knowledge , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Yann LeCun,et al.  Computing the stereo matching cost with a convolutional neural network , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Xi Wang,et al.  High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth , 2014, GCPR.

[52]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[53]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Jonathan M. Garibaldi,et al.  Real-Time Correlation-Based Stereo Vision with Reduced Border Errors , 2002, International Journal of Computer Vision.

[56]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[57]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.