Chemical Composition and Biogas Formation potential of Sida hermaphrodita and Silphium perfoliatum

[1]  C. Herrmann,et al.  Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. , 2016, Bioresource technology.

[2]  D. Massé,et al.  Methane yield from switchgrass harvested at different stages of development in Eastern Canada. , 2010, Bioresource technology.

[3]  Ulrich Schurr,et al.  Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes , 2017 .

[4]  Barbara Amon,et al.  Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. , 2007, Bioresource technology.

[5]  A. Lemmer,et al.  Methane yield potential of novel perennial biogas crops influenced by harvest date , 2014 .

[6]  C. Marton,et al.  Yield and chemical composition of plant parts of silage maize (Zea mays L) hybrids and their interest for biogas production. , 2013 .

[7]  Mariusz J. Stolarski,et al.  Thermophysical and Chemical Properties of Perennial Energy Crops Depending on Harvest Period , 2014 .

[8]  Peter McKendry,et al.  Energy production from biomass (Part 1): Overview of biomass. , 2002, Bioresource technology.

[9]  P. Westhoff,et al.  Towards high-biomass yielding bioenergy crop Silphium perfoliatum L.: phenotypic and genotypic evaluation of five cultivated populations , 2019, Biomass and Bioenergy.

[10]  J. Möhring,et al.  Optimization of specific methane yield prediction models for biogas crops based on lignocellulosic components using non-linear and crop-specific configurations , 2018, Industrial Crops and Products.

[11]  P. Gradziuk Potencjał i prognozy wykorzystania biogazu rolniczego w Polsce , 2017 .

[12]  B. Kołodziej,et al.  Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita , 2017, International journal of phytoremediation.

[13]  P. Weiland Biogas production: current state and perspectives , 2009, Applied Microbiology and Biotechnology.

[14]  A. Lemmer,et al.  Repeatability of a laboratory batch method to determine the specific biogas and methane yields , 2012 .

[15]  H. Heuwinkel,et al.  Specific Biogas Yield of Maize Can Be Predicted by the Interaction of Four Biochemical Constituents , 2013, BioEnergy Research.

[16]  F. Weissbach Evaluation of the renewable primary products for biogas production. Part I: Gas production potential of the fermentable nutrients. , 2009 .

[17]  L. Montgomery,et al.  Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: a review. , 2015 .

[18]  H. Heuwinkel,et al.  Predicting Specific Biogas Yield of Maize-Validation of Different Model Approaches , 2015, BioEnergy Research.

[19]  O. Chavalparit,et al.  Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process , 2018 .

[20]  Simone Graeff-Hönninger,et al.  Biomass and Biogas Yield of Maize (Zea mays L.) Grown under Artificial Shading , 2018, Agriculture.

[21]  Miguel A. Altieri,et al.  The Ecological Impacts of Large-Scale Agrofuel Monoculture Production Systems in the Americas , 2009 .

[22]  Christopher Morhart,et al.  Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: biomass yields, energetic valorization, utilization potentials, and management perspectives , 2018 .

[23]  K. Koch,et al.  Correlation between biogas yield and chemical composition of energy crops. , 2014, Bioresource technology.