BtuB TonB-dependent transporters and BtuG surface lipoproteins form stable complexes for vitamin B12 uptake in gut Bacteroides

[1]  N. Ranson,et al.  Outer membrane utilisomes mediate glycan uptake in gut Bacteroidetes , 2023, Nature.

[2]  B. van den Berg,et al.  TonB-Dependent Transport Across the Bacterial Outer Membrane. , 2023, Annual review of microbiology.

[3]  L. Gethings,et al.  Lipidomic Analysis Reveals Differences in Bacteroides Species Driven Largely by Plasmalogens, Glycerophosphoinositols and Certain Sphingolipids , 2022, bioRxiv.

[4]  M. Fischbach,et al.  Bacteroides thetaiotaomicron rough-type lipopolysaccharide: The chemical structure and the immunological activity. , 2022, Carbohydrate polymers.

[5]  A. Wright,et al.  Gut Commensal Bacteroidetes Encode a Novel Class of Vitamin B12-Binding Proteins , 2022, mBio.

[6]  B. Hoogenboom,et al.  Phase separation in the outer membrane of Escherichia coli , 2021, Proceedings of the National Academy of Sciences.

[7]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[8]  C. Robinson,et al.  Insights into SusCD-mediated glycan import by a prominent gut symbiont , 2021, Nature communications.

[9]  J. Enghild,et al.  Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis , 2020, Nature Microbiology.

[10]  M. Taga,et al.  Multi-faceted approaches to discovering and predicting microbial nutritional interactions. , 2020, Current opinion in biotechnology.

[11]  David J. Fleet,et al.  Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction , 2019, Nature Methods.

[12]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[13]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[14]  Daniel S. Hitchcock,et al.  Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. , 2019, Cell host & microbe.

[15]  V. Young,et al.  The role of the microbiota in infectious diseases , 2018, Nature Microbiology.

[16]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[17]  P. Degnan,et al.  Human gut Bacteroides capture vitamin B12 via cell surface-exposed lipoproteins , 2018, eLife.

[18]  Erica C. Seth,et al.  Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics , 2018, The ISME Journal.

[19]  K. Lindorff-Larsen,et al.  How well do force fields capture the strength of salt bridges in proteins? , 2018, bioRxiv.

[20]  Martyn Winn,et al.  Distributed computing for macromolecular crystallography , 2018, Acta crystallographica. Section D, Structural biology.

[21]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[22]  Carsten Sachse,et al.  Model-based local density sharpening of cryo-EM maps , 2017, eLife.

[23]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[24]  S. Padmanabhan,et al.  A New Facet of Vitamin B12: Gene Regulation by Cobalamin-Based Photoreceptors. , 2017, Annual review of biochemistry.

[25]  Martyn Winn,et al.  Recent developments in the CCP-EM software suite , 2017, Acta crystallographica. Section D, Structural biology.

[26]  Weston R. Whitaker,et al.  Tunable Expression Tools Enable Single-Cell Strain Distinction in the Gut Microbiome , 2017, Cell.

[27]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[28]  C. Robinson,et al.  Structural basis for nutrient acquisition by dominant members of the human gut microbiota , 2017, Nature.

[29]  S. Lynch,et al.  The Human Intestinal Microbiome in Health and Disease. , 2016, The New England journal of medicine.

[30]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[31]  G. Cornelis,et al.  Identification of a New Lipoprotein Export Signal in Gram-Negative Bacteria , 2016, mBio.

[32]  Juan Antonio Vizcaíno,et al.  The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition , 2016, Nucleic Acids Res..

[33]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[34]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[35]  Nicholas K. Sauter,et al.  Diffraction-geometry refinement in the DIALS framework , 2016, Acta crystallographica. Section D, Structural biology.

[36]  Masahira Hattori,et al.  The gut microbiome of healthy Japanese and its microbial and functional uniqueness , 2016, DNA research : an international journal for rapid publication of reports on genes and genomes.

[37]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[38]  Mark S.P. Sansom,et al.  Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria , 2015, Nature.

[39]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[40]  Matteo P. Ferla,et al.  Bacterial methionine biosynthesis. , 2014, Microbiology.

[41]  P. Degnan,et al.  Human gut microbes use multiple transporters to distinguish vitamin B₁₂ analogs and compete in the gut. , 2014, Cell host & microbe.

[42]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[43]  L. Comstock,et al.  Phylum‐wide general protein O‐glycosylation system of the Bacteroidetes , 2013, Molecular microbiology.

[44]  M. Taga,et al.  Growth Inhibition of Sporomusa ovata by Incorporation of Benzimidazole Bases into Cobamides , 2013, Journal of bacteriology.

[45]  L. Alvarez-Cohen,et al.  Versatility in Corrinoid Salvaging and Remodeling Pathways Supports Corrinoid-Dependent Metabolism in Dehalococcoides mccartyi , 2012, Applied and Environmental Microbiology.

[46]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[47]  J. Escalante‐Semerena,et al.  ArsAB, a novel enzyme from Sporomusa ovata activates phenolic bases for adenosylcobamide biosynthesis , 2011, Molecular microbiology.

[48]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[49]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[50]  Y. Hannun,et al.  Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine , 2010, Proceedings of the National Academy of Sciences.

[51]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[52]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[53]  Vincent B. Chen,et al.  MolProbity: all-atom structure validation for macromolecular crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[54]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[55]  Rob Knight,et al.  Identifying genetic determinants needed to establish a human gut symbiont in its habitat. , 2009, Cell host & microbe.

[56]  A. Laio,et al.  Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science , 2008 .

[57]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[58]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[59]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[60]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[61]  F. Shanahan,et al.  The gut flora as a forgotten organ , 2006, EMBO reports.

[62]  D. Shultis,et al.  Outer Membrane Active Transport: Structure of the BtuB:TonB Complex , 2006, Science.

[63]  Ruma Banerjee,et al.  The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. , 2003, Annual review of biochemistry.

[64]  A. K. Mohanty,et al.  Identification of the Periplasmic Cobalamin-Binding Protein BtuF of Escherichia coli , 2002, Journal of bacteriology.

[65]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[66]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[67]  Harvard Medical School,et al.  Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium , 1993, Journal of bacteriology.

[68]  R. Kadner,et al.  Identification of the btuCED polypeptides and evidence for their role in vitamin B12 transport in Escherichia coli , 1986, Journal of bacteriology.

[69]  Denis J. Evans,et al.  The Nose–Hoover thermostat , 1985 .

[70]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[71]  C. Bradbeer,et al.  Transport of vitamin B12 in Escherichia coli: common receptor system for vitamin B12 and bacteriophage BF23 on the outer membrane of the cell envelope , 1976, Journal of bacteriology.

[72]  C. Filip,et al.  Solubilization of the Cytoplasmic Membrane of Escherichia coli by the Ionic Detergent Sodium-Lauryl Sarcosinate , 1973, Journal of bacteriology.

[73]  K. Trueblood,et al.  Structure of Vitamin B12 , 1956, Nature.

[74]  Charles Darwin,et al.  Experiments , 1800, The Medical and physical journal.

[75]  Massimiliano Bonomi,et al.  Metadynamics , 2019, ioChem-BD Computational Chemistry Datasets.

[76]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[77]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[78]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[79]  T. Bobik,et al.  Cobalamin (coenzyme B12): synthesis and biological significance. , 1996, Annual review of microbiology.

[80]  Randy J. Read,et al.  Electronic Reprint Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard , 2022 .