Hydrogen Release and Structural Transformations in LiNH2-MgH2 Systems

[1]  V. Pecharsky,et al.  Mechanochemically driven nonequilibrium processes in MNH2–CaH2 systems (M = Li or Na) , 2010 .

[2]  D. Gregory,et al.  Tunable defect structure in the Li-Mg-N ternary phase system: a powder neutron diffraction study , 2010 .

[3]  Zhigang Zak Fang,et al.  Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2–MgH2 (1:1) mixture , 2010 .

[4]  K. Luo,et al.  Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH(2)/MgH(2) system. , 2010, Chemistry.

[5]  M. Fichtner,et al.  Hydrogenation Reaction Pathway in Li2Mg(NH)2 , 2009 .

[6]  S. Russo,et al.  A study of the LiNH2–MgH2 system for solid state hydrogen storage , 2008 .

[7]  Yumiko Nakamura,et al.  Dehydrogenation reaction of Li–Mg–N–H systems studied by in situ synchrotron powder X-ray diffraction and powder neutron diffraction , 2008 .

[8]  Jianhui Wang,et al.  Hydrogen Storage in a LiNH 2 -MgH 2 (1:1) System , 2008 .

[9]  J. Hanson,et al.  Crystal structure determination and reaction pathway of amide–hydride mixtures , 2008 .

[10]  M. Fichtner,et al.  Reaction steps in the Li–Mg–N–H hydrogen storage system , 2007 .

[11]  Christopher M Wolverton,et al.  First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .

[12]  Leon L. Shaw,et al.  Evaluation of the hydrogen storage behavior of a LiNH2 + MgH2 system with 1:1 ratio , 2007 .

[13]  Zhigang Zak Fang,et al.  Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications , 2007 .

[14]  S. Orimo,et al.  Dehydriding reaction of Mg(NH2)2–LiH system under hydrogen pressure , 2007 .

[15]  Yumiko Nakamura,et al.  The crystal structure of LiND2 and Mg(ND2)2 , 2007 .

[16]  H. Fujii,et al.  Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2. , 2006, The journal of physical chemistry. B.

[17]  David S Sholl,et al.  Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. , 2006, The journal of physical chemistry. B.

[18]  N. Ohba,et al.  Hydrogen storage properties of Li–Mg–N–H systems , 2005 .

[19]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[20]  Jianjiang Hu,et al.  Ternary Imides for Hydrogen Storage , 2004 .

[21]  S. Hino,et al.  New Metal−N−H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage , 2004 .

[22]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[23]  H. Jacobs,et al.  Darstellung und Eigenschaften von Magnesiumamid und ‐imid , 1969 .

[24]  Hans-Rudolf Wenk,et al.  Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra , 1997 .