Generalized linear mixed models: a review and some extensions

Breslow and Clayton (J Am Stat Assoc 88:9–25,1993) was, and still is, a highly influential paper mobilizing the use of generalized linear mixed models in epidemiology and a wide variety of fields. An important aspect is the feasibility in implementation through the ready availability of related software in SAS (SAS Institute, PROC GLIMMIX, SAS Institute Inc., URL http://www.sas.com, 2007), S-plus (Insightful Corporation, S-PLUS 8, Insightful Corporation, Seattle, WA, URL http://www.insightful.com, 2007), and R (R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org, 2006) for example, facilitating its broad usage. This paper reviews background to generalized linear mixed models and the inferential techniques which have been developed for them. To provide the reader with a flavor of the utility and wide applicability of this fundamental methodology we consider a few extensions including additive models, models for zero-heavy data, and models accommodating latent clusters.

[1]  N. Breslow,et al.  Bias Correction in Generalized Linear Mixed Models with Multiple Components of Dispersion , 1996 .

[2]  I. Dohoo,et al.  The use of negative binomial modelling in a longitudinal study of gastrointestinal parasite burdens in Canadian dairy cows. , 2002, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[3]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[4]  N. Uldbjerg,et al.  Preterm delivery , 2005, Acta obstetricia et gynecologica Scandinavica.

[5]  S. Raudenbush,et al.  Maximum Likelihood for Generalized Linear Models with Nested Random Effects via High-Order, Multivariate Laplace Approximation , 2000 .

[6]  K. Cheng,et al.  Testing Goodness of Fit for a Parametric Family of Link Functions , 1994 .

[7]  D. Bates,et al.  Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data , 1988 .

[8]  J. Raz,et al.  Linear mixed models with heterogeneous within-cluster variances. , 1997, Biometrics.

[9]  J. F. Lawless,et al.  Analysis of interval‐grouped recurrent‐event data using piecewise constant rate functions , 1998 .

[10]  H. S. Sichel,et al.  On a Distribution Representing Sentence‐Length in Written Prose , 1974 .

[11]  Dibyen Majumdar,et al.  Conditional Second-Order Generalized Estimating Equations for Generalized Linear and Nonlinear Mixed-Effects Models , 2002 .

[12]  J. Kalbfleisch,et al.  Maximization by Parts in Likelihood Inference , 2005 .

[13]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[14]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[15]  C. Dean,et al.  Efficiency Lost by Analyzing Counts Rather than Event Times in Poisson and Overdispersed Poisson Regression Models , 1997 .

[16]  Norman E. Breslow,et al.  Score Tests in Overdispersed GLM’s , 1989 .

[17]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[18]  Gordon E. Willmot,et al.  A mixed poisson–inverse‐gaussian regression model , 1989 .

[19]  B. Coull,et al.  A diagnostic test for the mixing distribution in a generalised linear mixed model , 2006 .

[20]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[21]  J. Simons,et al.  Risk for Marijuana-Related Problems among College Students: An Application of Zero-Inflated Negative Binomial Regression , 2006, The American journal of drug and alcohol abuse.

[22]  M. Tanner,et al.  Mixtures of marginal models , 2000 .

[23]  Jiming Jiang Consistent Estimators in Generalized Linear Mixed Models , 1998 .

[24]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[25]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[26]  R. Platt,et al.  A generalized linear mixed models approach for detecting incident clusters of disease in small areas, with an application to biological terrorism. , 2004, American journal of epidemiology.

[27]  Nicola Sartori,et al.  CONDITIONAL LIKELIHOOD INFERENCE IN GENERALIZED LINEAR MIXED MODELS , 2004 .

[28]  N. Breslow,et al.  Bias correction in generalised linear mixed models with a single component of dispersion , 1995 .

[29]  Hugh P Possingham,et al.  Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. , 2005, Ecology letters.

[30]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[31]  Roy E. Welsch,et al.  Regression Diagnostics with Dynamic Graphics: [With Discussions and Response] , 1989 .

[32]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[33]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[34]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[35]  J. Nelder,et al.  An extended quasi-likelihood function , 1987 .

[36]  K. Kleinman,et al.  Preterm Delivery in Boston Before and After September 11th, 2001 , 2005, Epidemiology.

[37]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[38]  David R. Cox,et al.  Edgeworth and Saddle‐Point Approximations with Statistical Applications , 1979 .

[39]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[40]  R. Dennis Cook,et al.  Regression Diagnostics With Dynamic Graphics , 1989 .

[41]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[42]  Peter McCullagh,et al.  Laplace Approximation of High Dimensional Integrals , 1995 .

[43]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[44]  D. Pierce,et al.  Residuals in Generalized Linear Models , 1986 .

[45]  UsingSmoothing SplinesbyXihong Liny,et al.  Inference in Generalized Additive Mixed Models , 1999 .

[46]  T. Louis,et al.  Approximate Posterior Distributions for Incomplete Data Problems , 1982 .

[47]  Marie Davidian,et al.  A Monte Carlo EM algorithm for generalized linear mixed models with flexible random effects distribution. , 2002, Biostatistics.

[48]  C. Dean,et al.  Detection of local and global outliers in mapping studies , 2008 .

[49]  B. Jørgensen Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .

[50]  R. Carroll,et al.  Variance Function Estimation , 1987 .

[51]  Tue Tjur,et al.  A Connection between Rasch's Item Analysis Model and a Multiplicative Poisson Model , 1982 .

[52]  J. Dubin,et al.  Triggered sampling could help improve longitudinal studies of persons with elevated mortality risk. , 2007, Journal of clinical epidemiology.

[53]  L. Tierney,et al.  Approximate marginal densities of nonlinear functions , 1989 .

[54]  Roy E. Welsch,et al.  Regression diagnostics with dynamic graphics (with discussion) , 1989 .

[55]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[56]  C. Dean,et al.  Clustered Mixed Nonhomogeneous Poisson Process Spline Models for the Analysis of Recurrent Event Panel Data , 2008, Biometrics.

[57]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[58]  R. Henderson,et al.  A serially correlated gamma frailty model for longitudinal count data , 2003 .

[59]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[60]  Rasmus Waagepetersen A Simulation-based Goodness-of-fit Test for Random Effects in Generalized Linear Mixed Models , 2006 .