Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: A case study
暂无分享,去创建一个
J-P. Franzidis | J. L. Broadhurst | Mathias Becker | D. L. Reid | M. Becker | J. Franzidis | J. Broadhurst | N. A. Meyer | J. U. Vögeli | D. Reid
[1] Liang-Shih Fan,et al. CO2 Mineral Sequestration: Chemically Enhanced Aqueous Carbonation of Serpentine , 2008 .
[2] M. Becker,et al. Investigation of the potential for mineral carbonation of PGM tailings in South Africa , 2011 .
[3] R. Wogelius,et al. Olivine dissolution at 25°C: Effects of pH, CO2, and organic acids , 1991 .
[4] S. S. Goldich. A Study in Rock-Weathering , 1938, The Journal of Geology.
[5] Klaus S. Lackner,et al. Carbon dioxide disposal in carbonate minerals , 1995 .
[6] M. Shopska,et al. The influence of attrition milling on carbon dioxide sequestration on magnesium–iron silicate , 2010 .
[7] I. Martinez,et al. Experimental study of Mg-rich silicates carbonation at 400 and 500 °C and 1 kbar , 2009 .
[8] Klaus S. Lackner,et al. CARBONATE CHEMISTRY FOR SEQUESTERING FOSSIL CARBON , 2003 .
[9] W. D. Keller,et al. Dissolution of rock-forming silicate minerals in organic acids: Simulated first-stage weathering of fresh mineral surfaces , 1970 .
[10] A. D. Surridge,et al. Carbon capture and storage in South Africa , 2009 .
[11] J. Drever,et al. The effect of oxalate on the dissolution rates of oligoclase and tremolite , 1987 .
[12] M. Maroto-Valer,et al. Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation , 2007 .
[13] S. Welch,et al. The effect of organic acids on plagioclase dissolution rates and stoichiometry , 1993 .
[14] O. Levenspiel. Chemical Reaction Engineering , 1972 .
[15] Klaus S. Lackner,et al. Enhancing process kinetics for mineral carbon sequestration , 2009 .
[16] F. Saito,et al. Enhancement of acid extraction of magnesium and silicon from serpentine by mechanochemical treatment , 1997 .
[17] G. A. Parks,et al. Dissolution kinetics of magnesium silicates , 1972 .
[18] R. Zevenhoven,et al. Dissolution of natural serpentinite in mineral and organic acids , 2007 .
[19] S. Brantley,et al. Dissolution of forsteritic olivine at 65°C and 2 , 2000 .
[20] R. Kuusik,et al. Production of magnesium carbonates from serpentinite for long-term storage of CO2 , 2007 .
[21] I. Munz,et al. Investigating dissolution of mechanically activated olivine for carbonation purposes , 2010 .
[22] R. Berner,et al. Mechanism of pyroxene and amphibole weathering; II, Observations of soil grains , 1982 .
[23] Liang-Shih Fan,et al. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process , 2004 .
[24] D. Grandstaff. Changes in surface area and morphology and the mechanism of forsterite dissolution , 1978 .
[25] G. Furrer,et al. The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO , 1986 .
[26] G. E. Rush,et al. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies , 2004 .
[27] S. Banwart,et al. Carbon dioxide mediated dissolution of Ca-feldspar: implications for silicate weathering , 2000 .
[28] J. Kubicki,et al. Kinetics of water-rock interaction , 2008 .
[29] J. J. Morgan,et al. Dissolution kinetics of chrysotile at pH 7 to 10 , 1985 .
[30] S. Gerdemann,et al. Ex situ aqueous mineral carbonation. , 2007, Environmental science & technology.
[31] R.C.L. Jonckbloedt,et al. Olivine dissolution in sulphuric acid at elevated temperatures—implications for the olivine process, an alternative waste acid neutralizing process , 1998 .
[32] A. Dogan Paktunc,et al. Characterization of Mine Wastes for Prediction of Acid Mine Drainage , 1999 .