Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.

[1]  U. Deppenmeier,et al.  Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans , 2013, Applied Microbiology and Biotechnology.

[2]  Dongzhi Wei,et al.  Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way. , 2012, Bioresource technology.

[3]  U. Deppenmeier,et al.  Construction of expression vectors for protein production in Gluconobacter oxydans. , 2010, Journal of biotechnology.

[4]  A. Mas,et al.  Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions , 2009, Journal of applied microbiology.

[5]  H. Sahm,et al.  An easy cloning and expression vector system for Gluconobacter oxydans. , 2008, International journal of food microbiology.

[6]  Lingyun Zhou,et al.  Surface Display of GFP by Pseudomonas Syringae Truncated Ice Nucleation Protein in Attenuated Vibrio Anguillarum Strain , 2008, Marine Biotechnology.

[7]  D. Wei,et al.  Repeated Use of Immobilized Gluconobacter oxydans Cells for Conversion of Glycerol to Dihydroxyacetone , 2007, Preparative biochemistry & biotechnology.

[8]  H. Sahm,et al.  High-yield 5-keto-d-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans , 2006, Applied Microbiology and Biotechnology.

[9]  D. Hekmat,et al.  Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process , 2005, Bioprocess and biosystems engineering.

[10]  W. F. Fricke,et al.  Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans , 2005, Nature Biotechnology.

[11]  D. Hekmat,et al.  Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans , 2003, Bioprocess and biosystems engineering.

[12]  K. Heller,et al.  Cloning of Escherichia coli lacZ and lacY Genes and Their Expression in Gluconobacter oxydans and Acetobacter liquefaciens , 2002, Applied and Environmental Microbiology.

[13]  S. Duffy,et al.  Modeling Yeast Spoilage in Cold-Filled Ready-To-Drink Beverages with Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Candida lipolytica , 2002, Applied and Environmental Microbiology.

[14]  V. Singh,et al.  Gluconobacter oxydans: its biotechnological applications. , 2001, Journal of molecular microbiology and biotechnology.

[15]  M. Schedel Regioselective Oxidation of Aminosorbitol with Gluconobacter oxydans, Key Reaction in the Industrial 1‐Deoxynojirimycin Synthesis , 2001 .

[16]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[17]  M. Niwa,et al.  Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain , 1997, Applied and Environmental Microbiology.

[18]  D. Roop,et al.  Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. , 1995, Gene.

[19]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[20]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Inouye,et al.  Evidence for redox forms of the Aequorea green fluorescent protein , 1994, FEBS letters.

[22]  W. M. Westler,et al.  Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. , 1993, Biochemistry.

[23]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[24]  R. Doi,et al.  Multiple procaryotic ribonucleic acid polymerase sigma factors. , 1986, Microbiological reviews.

[25]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[26]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[27]  K. Matsushita,et al.  Purification and Characterization of 2-Keto-D-gluconate Dehydrogenase from Gluconobacter melanogenus , 1981 .

[28]  G. An,et al.  The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. , 1980, Gene.

[29]  W. Olijve,et al.  Analysis of growth of Gluconobacter oxydans in glucose containing media , 1979, Archives of Microbiology.

[30]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[31]  M. Merfort Untersuchungen zur 5-Keto-D-Gluconat Bildung mit Gluconobacter oxydans , 2006 .

[32]  H. Sahm,et al.  Application of Gluconobacter oxydans for biotechnologically relevant reactions. , 2005 .

[33]  T. Beppu Genetic organization ofAcetobacter for acetic acid fermentation , 2004, Antonie van Leeuwenhoek.

[34]  J. Swings The genera Acetobacter and Gluconobacter , 1992 .

[35]  D A Siegele,et al.  THE REGULATION OF TRANSCRIPTION INITIATION BACTERIA IN , 1985 .