Quantitative Sensitivity Analysis of Physical Parameterizations for Cases of Deep Convection in the NASA GEOS-5

AbstractParameterization of processes that occur on length scales too small to resolve on a computational grid is a major source of uncertainty in global climate models. This study investigates the relative importance of a number of parameters used in the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model, focusing on cloud, convection, and boundary layer parameterizations. Latin hypercube sampling is used to generate a few hundred sets of 19 candidate physics parameters, which are subsequently used to generate ensembles of single-column model realizations of cloud content, precipitation, and radiative fluxes for four different field campaigns. A Gaussian process model is then used to create a computationally inexpensive emulator for the simulation code that can be used to determine a measure of relative parameter sensitivity by sampling the response surface for a very large number of input parameter sets. Parameter sensitivities are computed for different geog...

[1]  Yun Qian,et al.  Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model , 2011 .

[2]  Yihui Ding,et al.  A Study on Anomalous Activities of East Asian Summer Monsoon during 1999 , 2001 .

[3]  L. D. Monache,et al.  Bayesian Exploration of Multivariate Orographic Precipitation Sensitivity for Moist Stable and Neutral Flows , 2015 .

[4]  W. Large,et al.  Open Ocean Momentum Flux Measurements in Moderate to Strong Winds , 1981 .

[5]  Hui Wan,et al.  Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models , 2014 .

[6]  Erik N. Rasmussen,et al.  Precipitation Uncertainty Due to Variations in Precipitation Particle Parameters within a Simple Microphysics Scheme , 2004 .

[7]  Leonard A. Smith,et al.  Uncertainty in predictions of the climate response to rising levels of greenhouse gases , 2005, Nature.

[8]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability , 2008 .

[9]  M. Chou,et al.  Technical report series on global modeling and data assimilation. Volume 3: An efficient thermal infrared radiation parameterization for use in general circulation models , 1994 .

[10]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[11]  S. Klein,et al.  Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE , 2010 .

[12]  Richard H. Johnson,et al.  Characteristics of the 1998 Summer Monsoon Onset over the Northern South China Sea , 2002 .

[13]  P. Webster,et al.  TOGA COARE: The Coupled Ocean-Atmosphere Response Experiment. , 1992 .

[14]  Richard H. Johnson,et al.  Rainfall and Radiative Heating Rates from TOGA COARE Atmospheric Budgets , 2000 .

[15]  David J. Stensrud,et al.  Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems , 2000 .

[16]  Sally A. McFarlane,et al.  Uncertainty quantification and parameter tuning in the CAM5 Zhang‐McFarlane convection scheme and impact of improved convection on the global circulation and climate , 2012 .

[17]  Derek J. Posselt,et al.  Errors in Ensemble Kalman Smoother Estimates of Cloud Microphysical Parameters , 2014 .

[18]  Richard H. Johnson,et al.  Corrected TOGA COARE Sounding Humidity Data: Impact on Diagnosed Properties of Convection and Climate over the Warm Pool , 2003 .

[19]  Vincent E. Larson,et al.  A sensitivity analysis of cloud properties to CLUBB parameters in the single‐column Community Atmosphere Model (SCAM5) , 2014 .

[20]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[21]  G. Stephens,et al.  Controls of Global-Mean Precipitation Increases in Global Warming GCM Experiments , 2008 .

[22]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[23]  Edward J. Zipser,et al.  Environmental Variability during TOGA COARE , 2000 .

[24]  Andrea Molod,et al.  The impact of limiting ocean roughness on GEOS‐5 AGCM tropical cyclone forecasts , 2013 .

[25]  M. Chou,et al.  Parameterizations for the Absorption of Solar Radiation by O2 and CO2 with Application to Climate Studies , 1990 .

[26]  Wojciech W. Grabowski,et al.  Cloud Resolving Modeling of Tropical Cloud Systems during Phase III of GATE. Part III: Effects of Cloud Microphysics , 1999 .

[27]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[28]  W. Tao,et al.  The Effect of Melting Processes on the Development of a Tropical and a Midlatitude Squall Line , 1995 .

[29]  Jon Petch,et al.  Sensitivity studies using a cloud‐resolving model simulation of the tropical west Pacific , 2001 .

[30]  M. Chou,et al.  A Solar Radiation Model for Use in Climate Studies , 1992 .

[31]  William R. Cotton,et al.  The Impact of Hail Size on Simulated Supercell Storms , 2004 .

[32]  Huiping Yan,et al.  Parametric sensitivity and calibration for the Kain-Fritsch convective parameterization scheme in the WRF model , 2014 .

[33]  Donald D. Lucas,et al.  The parametric sensitivity of CAM5's MJO , 2014 .

[34]  Derek J. Posselt,et al.  Robust Characterization of Model Physics Uncertainty for Simulations of Deep Moist Convection , 2010 .

[35]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[36]  A. Kitoh,et al.  The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization , 1988 .

[37]  Derek J. Posselt,et al.  Nonlinear Parameter Estimation: Comparison of an Ensemble Kalman Smoother with a Markov Chain Monte Carlo Algorithm , 2012 .

[38]  Chris Snyder,et al.  Model Uncertainty in a Mesoscale Ensemble Prediction System: Stochastic versus Multiphysics Representations , 2011 .

[39]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[40]  Max J. Suarez,et al.  The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales , 2001 .

[41]  David A. Randall,et al.  Single-Column Models and Cloud Ensemble Models as Links between Observations and Climate Models , 1996 .

[42]  Christian Jakob,et al.  An Improved Strategy for the Evaluation of Cloud Parameterizations in GCMS , 2003 .

[43]  Robert G. Fovell,et al.  Effect of vertical wind shear on numerically simulated multicell storm structure , 1989 .

[44]  Rolando R. Garcia,et al.  'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere , 1994 .

[45]  Richard Neale,et al.  Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5 , 2015 .

[46]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[47]  Andrea Molod,et al.  Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model , 2012 .

[48]  R. Houze,et al.  The natural variability of precipitating clouds over the western Pacific warm pool , 1998 .

[49]  Julio T. Bacmeister,et al.  Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM , 2006 .

[50]  Minghua Zhang,et al.  Constrained Variational Analysis of Sounding Data Based on Column-Integrated Budgets of Mass, Heat, Moisture, and Momentum: Approach and Application to ARM Measurements. , 1997 .

[51]  Sally A. McFarlane,et al.  A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5 , 2013 .

[52]  W. Collins,et al.  Long-Term Behavior of Cloud Systems in TOGA COARE and Their Interactions with Radiative and Surface Processes. Part II: Effects of Ice Microphysics on Cloud–Radiation Interaction , 1999 .

[53]  C. Jakob Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities, and strategies , 2010 .

[54]  J. Kondo,et al.  Air-sea bulk transfer coefficients in diabatic conditions , 1975 .

[55]  Renate Hagedorn,et al.  Representing model uncertainty in weather and climate prediction , 2005 .

[56]  Jonathan Rougier,et al.  Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments , 2009 .

[57]  M. Webb,et al.  Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles , 2011 .

[58]  J. Murphy,et al.  A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  Derek J. Posselt,et al.  Linearization of Microphysical Parameterization Uncertainty Using Multiplicative Process Perturbation Parameters , 2014 .

[60]  Liu Yanju,et al.  Onset and the evolution of the Summer Monsoon over the South China Sea during SCSMEX Field Experiment in 1998 , 2001 .

[61]  A. Rosati,et al.  The Role of Large-Scale Feedbacks in Cumulus Convection Parameter Estimation , 2016 .

[62]  Y. Qian,et al.  Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM, Version 2.1 , 2015 .

[63]  Audrey B. Wolf,et al.  Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions , 2001 .

[64]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[65]  Richard H. Johnson,et al.  A Report of the Field Operations and Early Results of the South China Sea Monsoon Experiment (SCSMEX) , 1999 .

[66]  Yun Qian,et al.  Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation , 2015, Climate Dynamics.

[67]  P. Webster,et al.  The large-scale context for the TOGA Coupled Ocean-Atmosphere Response Experiment , 1995 .

[68]  G. Stephens Cloud Feedbacks in the Climate System: A Critical Review , 2005 .

[69]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[70]  G. Stephens,et al.  Changes in the Interaction between Tropical Convection, Radiation, and the Large-Scale Circulation in a Warming Environment , 2012 .

[71]  Seiji Yukimoto,et al.  Climate Change Projections , 1998 .

[72]  Wendell A. Nuss,et al.  Use of Multiquadric Interpolation for Meteorological Objective Analysis , 1994 .

[73]  Derek J. Posselt,et al.  A Bayesian Examination of Deep Convective Squall-Line Sensitivity to Changes in Cloud Microphysical Parameters , 2016 .

[74]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[75]  Minghua Zhang,et al.  An intercomparison of cloud‐resolving models with the atmospheric radiation measurement summer 1997 intensive observation period data , 2002 .

[76]  Heikki Haario,et al.  Ensemble prediction and parameter estimation system: the concept , 2012 .

[77]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[78]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments , 2008 .

[79]  Minghua Zhang,et al.  An Intercomparison of Cloud-Resolving Models with the ARM Summer 1997 IOP Data , 2001 .

[80]  Derek J. Posselt,et al.  Quantification of Cloud Microphysical Parameterization Uncertainty using Radar Reflectivity , 2012 .

[81]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[82]  Andrea Molod,et al.  The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna , 2012 .

[83]  Andrea Molod,et al.  Improvement of the GEOS‐5 AGCM upon updating the air‐sea roughness parameterization , 2011 .

[84]  W. Tao,et al.  Single-column and Cloud Ensemble Model simulations of TOGA-COARE convective systems , 1999 .

[85]  Erkki Oja,et al.  Estimation of ECHAM5 climate model closure parameters with adaptive MCMC , 2010 .

[86]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[87]  Norman A. McFarlane,et al.  The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere , 1987 .

[88]  S. Schubert,et al.  Climatology of the Simulated Great Plains Low-Level Jet and Its Contribution to the Continental Moisture Budget of the United States , 1995 .

[89]  Tianjun Zhou,et al.  Parameter Tuning and Calibration of RegCM3 with MIT–Emanuel Cumulus Parameterization Scheme over CORDEX East Asia Domain , 2014 .

[90]  M. H. Zhang,et al.  Objective Analysis of ARM IOP Data: Method and Sensitivity , 1999 .