A new insight into catalytic role of copper sulfate on elemental mercury oxidation: DFT and experimental study

[1]  Xiaofeng Xie,et al.  Highly stable activated carbon composite material to selectively capture gas-phase elemental mercury from smelting flue gas: Copper polysulfide modification , 2019, Chemical Engineering Journal.

[2]  Xiaofeng Xie,et al.  Selective recovery of mercury from high mercury-containing smelting wastes using an iodide solution system. , 2019, Journal of hazardous materials.

[3]  Hailong Li,et al.  Promotional effect of CuO loading on the catalytic activity and SO2 resistance of MnOx/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation , 2018, Fuel.

[4]  Yue Cao,et al.  Simultaneous NO Removal and Hg0 Oxidation over CuO Doped V2O5-WO3/TiO2 Catalysts in Simulated Coal-Fired Flue Gas , 2018 .

[5]  L. Chai,et al.  High catalytic activity and SO2-poisoning resistance of Pd/CuCl2/γ-Al2O3 catalyst for elemental mercury oxidation , 2018 .

[6]  Shuxiao Wang,et al.  Improving Flue Gas Mercury Removal in Waste Incinerators by Optimization of Carbon Injection Rate. , 2018, Environmental science & technology.

[7]  L. Chai,et al.  Transport and transformation of mercury during wet flue gas cleaning process of nonferrous metal smelting , 2017, Environmental Science and Pollution Research.

[8]  Joo-Youp Lee,et al.  Heterogeneous oxidation of elemental mercury vapor over RuO2/rutile TiO2 catalyst for mercury emissions control , 2017 .

[9]  Jinxiu Wang,et al.  Facile synthesis of CuSO4/TiO2 catalysts with superior activity and SO2 tolerance for NH3-SCR: physicochemical properties and reaction mechanism , 2017 .

[10]  L. Chai,et al.  Selective Removal of Elemental Mercury from High-Concentration SO2 Flue Gas by Thiourea Solution and Investigation of Mechanism , 2017 .

[11]  L. Chai,et al.  Effect of copper ions on the mercury re-emission in a simulated wet scrubber , 2017 .

[12]  Shijian Yang,et al.  Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics. , 2017, Environmental science & technology.

[13]  Minghou Xu,et al.  Using the Novel Method of Nonthermal Plasma To Add Cl Active Sites on Activated Carbon for Removal of Mercury from Flue Gas. , 2016, Environmental science & technology.

[14]  Junying Zhang,et al.  Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 3. Regeneration performance in realistic flue gas atmosphere , 2016 .

[15]  Xin Guo,et al.  DFT and Experimental Study on the Mechanism of Elemental Mercury Capture in the Presence of HCl on α-Fe2O3(001). , 2016, Environmental science & technology.

[16]  L. Chai,et al.  The effect of selenite on mercury re-emission in smelting flue gas scrubbing system , 2016 .

[17]  Junying Zhang,et al.  Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 2. Identification of involved reaction mechanism , 2016 .

[18]  S. Deng,et al.  Fe and Co modified vanadium–titanium steel slag as sorbents for elemental mercury adsorption , 2016 .

[19]  Jinxiu Wang,et al.  Performances of CuSO4/TiO2 catalysts in selective catalytic reduction of NOx by NH3 , 2016 .

[20]  Minghou Xu,et al.  Catalytic oxidation of elemental mercury by Mn–Mo/CNT at low temperature , 2016 .

[21]  T. Bolin,et al.  Oxidation of elemental mercury vapor over γ-Al 2 O 3 supported CuCl 2 catalyst for mercury emissions control , 2015 .

[22]  Bingkai Zhang,et al.  Heterogeneous Mercury Oxidation by HCl over CeO2 Catalyst: Density Functional Theory Study , 2015 .

[23]  I. Lo,et al.  Enhanced paramagnetic Cu²⁺ ions removal by coupling a weak magnetic field with zero valent iron. , 2015, Journal of hazardous materials.

[24]  Tingyu Zhu,et al.  The enhance effect of atomic Cl in CuCl2/TiO2 catalyst for Hg0 catalytic oxidation , 2014 .

[25]  Tingyu Zhu,et al.  CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation , 2014 .

[26]  I. Beletskaya,et al.  CuSO4/Al2O3 as a new effective and recyclable catalyst for the arylation of dialkyl phosphites , 2013, Russian Chemical Bulletin.

[27]  Zhanhu Guo,et al.  A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. , 2013, Environmental science & technology.

[28]  J. Wilcox,et al.  Heterogeneous mercury oxidation on au(111) from first principles. , 2013, Environmental science & technology.

[29]  Joo-Youp Lee,et al.  Heterogeneous catalytic reaction of elemental mercury vapor over cupric chloride for mercury emissions control , 2013 .

[30]  Hai-Long Li,et al.  Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst , 2013 .

[31]  Xiaojian Fu,et al.  Vibrational spectra of copper sulfate hydrates investigated with low-temperature Raman spectroscopy and terahertz time domain spectroscopy. , 2012, The journal of physical chemistry. A.

[32]  J. Jia,et al.  Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. , 2011, Environmental science & technology.

[33]  Wei Zhang,et al.  Experimental Study of Gaseous Elemental Mercury Removal with CeO2/γ-Al2O3 , 2011 .

[34]  Hai-Long Li,et al.  Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas , 2011 .

[35]  J. Lasne,et al.  HCl adsorption on ice at low temperature: a combined X-ray absorption, photoemission and infrared study. , 2011, Physical chemistry chemical physics : PCCP.

[36]  M. Maroto-Valer,et al.  Analysis of mercury species present during coal combustion by thermal desorption , 2010 .

[37]  Martin Tjahjono,et al.  Use of thermo‐Raman spectroscopy and chemometric analysis to identify dehydration steps of hydrated inorganic samples—application to copper sulfate pentahydrate , 2010 .

[38]  Zhemin Shen,et al.  The effect of N-doping and halide-doping on the activity of CuCoO4 for the oxidation of elemental mercury , 2008 .

[39]  S. Ito,et al.  Mercury oxidation by copper oxides in combustion flue gases , 2008 .

[40]  Jing Li,et al.  A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel , 2007 .

[41]  A. Presto,et al.  Survey of catalysts for oxidation of mercury in flue gas. , 2006, Environmental science & technology.

[42]  Shiv k. Sharma,et al.  Micro-Raman studies of hydrous ferrous sulfates and jarosites. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[43]  A. Franquet,et al.  XPS study of the atmospheric corrosion of copper alloys of archaeological interest , 2004 .

[44]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[45]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[46]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[47]  R. Vasquez CuSO4 by XPS , 1998 .

[48]  Stephen Poulston,et al.  Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES , 1996 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[52]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[53]  R. Vasquez CuCl by XPS , 1993 .

[54]  O. Sørensen,et al.  Dehydration of CuSO4.5H2O Studied by Conventional and Advanced Thermal Analysis Techniques , 1989 .

[55]  R. Hoffman,et al.  Anhydrous copper(II) sulfate: an efficient catalyst for the liquid-phase dehydration of alcohols , 1980 .

[56]  F. Papa,et al.  Impact of particle size and metal–support interaction on denitration behavior of well-defined Pt–Cu nanoparticles , 2015 .

[57]  T. Ishihara,et al.  Metal Sulfate Catalyst for CCl2F2 Decomposition in the Presence of H2O , 2002 .

[58]  Ling Yu,et al.  X-ray photoelectron spectroscopic study of CuSO4—MgO/SiO2 catalysts for isoprene synthesis , 1990 .

[59]  R. Beebe,et al.  COPPER SULFATE AS THE DEACON CHLORINE CATALYST?1 , 1928 .