Light Logics and the Call-by-Value Lambda Calculus

The so-called light logics have been introduced as logical systems enjoying quite remarkable normalization properties. Designing a type assignment system for pure lambda calculus from these logics, however, is problematic. In this paper we show that shifting from usual call-by-name to call-by-value lambda calculus allows regaining strong connections with the underlying logic. This will be done in the context of Elementary Affine Logic (EAL), designing a type system in natural deduction style assigning EAL formulae to lambda terms.

[1]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[2]  Corrado Böhm,et al.  Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..

[3]  Paolo Coppola,et al.  Typing Lambda Terms in Elementary Logic with Linear Constraints , 2001, TLCA.

[4]  Patrick Baillot,et al.  Soft lambda-Calculus: A Language for Polynomial Time Computation , 2004, FoSSaCS.

[5]  Patrick Baillot Checking Polynomial Time Complexity with Types , 2002, IFIP TCS.

[6]  J. B. Wells,et al.  Typability and type checking in the second-order /spl lambda/-calculus are equivalent and undecidable , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[7]  Kazushige Terui,et al.  Light Logic and Polynomial Time Computation , 2004 .

[8]  Ugo Dal Lago,et al.  Elementary Affine Logic and the Call-by-Value Lambda Calculus , 2005, TLCA.

[9]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[10]  Kazushige Terui,et al.  Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[11]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[12]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[13]  Kazushige Terui,et al.  Light types for polynomial time computation in lambda-calculus , 2004, LICS 2004.

[14]  Paolo Coppola,et al.  Principal Typing in Elementary Affine Logic , 2003, TLCA.

[15]  Kazushige Terui,et al.  A Feasible Algorithm for Typing in Elementary Affine Logic , 2005, TLCA.

[16]  Kazushige Terui,et al.  Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic , 2006, CSL.