Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers

Ambient temperature drying shrinkage in metakaolin-based geopolymer pastes exposed to low relative humidity environments has been investigated. The effect of varying the geopolymer composition (water content, Si:Al ratio, Na:Al ratio, and Na + or K + cations) on the sensitivity to ambient temperature drying shrinkage is reported. The definition of “structural” water as being the minimum water content required that prevents contractions in the gel structure, and thus drying shrinkage from occurring, is introduced. From the results presented, it is clear that the ionic charge density of cations, the total quantity of cations, and the relative quantities and stabilities of cation: AlO4 � pairs in the paste are major factors affecting the sensitivity of pastes to ambient temperature drying shrinkage.

[1]  P. Duxson,et al.  Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels , 2005 .

[2]  Olivier Diat,et al.  Structural Evolution during geopolymerization from an early age to consolidated material. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[3]  J. Deventer,et al.  The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’ , 2007 .

[4]  Ángel Palomo,et al.  Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead , 2003 .

[5]  J. Phair,et al.  Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers , 2001 .

[6]  Michele Migliore,et al.  Monte Carlo study of free energy of hydration for Li+, Na+, K+, F−, and Cl− with ab initio potentials , 1988 .

[7]  J. Deventer,et al.  Thermal evolution of metakaolin geopolymers: Part 1 – Physical evolution , 2006 .

[8]  Grant C. Lukey,et al.  Thermal Conductivity of Metakaolin Geopolymers Used as a First Approximation for Determining Gel Interconnectivity , 2006 .

[9]  K. Sagoe-Crentsil,et al.  Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems , 2007 .

[10]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[11]  Jonathan L. Bell,et al.  X-Ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer) , 2008 .

[12]  P. Balaguru,et al.  FIRE RESISTANT ALUMINOSILICATE COMPOSITES , 1997 .

[13]  J. Wastiels,et al.  Low-temperature synthesized aluminosilicate glasses , 1996 .

[14]  Joel Davis,et al.  Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al = 1.5 4 , 2008 .

[15]  Á. Palomo,et al.  The role played by the reactive alumina content in the alkaline activation of fly ashes , 2006 .

[16]  J. Deventer,et al.  39K NMR of Free Potassium in Geopolymers , 2006 .

[17]  Raffaele Cioffi,et al.  Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue , 2003 .

[18]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications☆ , 1997 .

[19]  T. Bakharev,et al.  Resistance of geopolymer materials to acid attack , 2005 .

[20]  S. Donatello,et al.  An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements. , 2012, Journal of hazardous materials.

[21]  George W. Scherer,et al.  Theory of Drying , 1990 .

[22]  Á. Palomo,et al.  Effect of Calcium Additions on N-A-S-H Cementitious Gels , 2010 .

[23]  K. Sagoe-Crentsil,et al.  Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems , 2007 .

[24]  Ángel Palomo,et al.  Fixing Arsenic in Alkali‐Activated Cementitious Matrices , 2005 .

[25]  Ángel Palomo,et al.  Factors affecting early compressive strength of alkali activated fly ash (OPC-free) concrete , 2007 .

[26]  J. Davidovits PROPERTIES OF GEOPOLYMER CEMENTS , 1994 .

[27]  K. MacKenzie,et al.  Synthesis and thermal behaviour of potassium sialate geopolymers , 2003 .

[28]  Yao Xiao,et al.  Role of water in the synthesis of calcined kaolin-based geopolymer , 2009 .

[29]  María Teresa Blanco-Varela,et al.  Chemical stability of cementitious materials based on metakaolin , 1999 .

[30]  Kim S. Finnie,et al.  Influence of curing schedule on the integrity of geopolymers , 2007 .

[31]  Maricela Lizcano,et al.  Mechanical properties of sodium and potassium activated metakaolin-based geopolymers , 2012, Journal of Materials Science.

[32]  Waltraud M. Kriven,et al.  The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers , 2007 .

[33]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[34]  Frank Bullen,et al.  Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin wi , 2012 .

[35]  J. Phair,et al.  Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers , 2002 .

[36]  A. P. Zosin,et al.  Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes , 1998 .

[37]  Kenneth J. D. MacKenzie,et al.  Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate , 2003 .

[38]  Francisca Puertas,et al.  Alkali-activated slag cements: Kinetic studies , 1997 .

[39]  Á. Palomo,et al.  Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products , 2004 .

[40]  J. Deventer,et al.  Understanding the relationship between geopolymer composition, microstructure and mechanical properties , 2005 .

[41]  Brian H. O'Connor,et al.  Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite , 2003 .

[42]  K. MacKenzie,et al.  Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers , 2000 .

[43]  Ángel Palomo,et al.  Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes Part I. Stabilisation of boron , 2003 .

[44]  Grant C. Lukey,et al.  Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C , 2007 .

[45]  E. Giannelis,et al.  From nanocomposite to nanogel polymer electrolytes , 2003 .

[46]  T. Cheng,et al.  Fire-resistant geopolymer produced by granulated blast furnace slag , 2003 .

[47]  H. Masuda,et al.  Structural rigidity of first hydration spheres of Na+ and Ca2+ in cluster models. Full geometry optimizations of [M(H2O)6]n+, [M(H2O)6⋯H2O]n+ and [M(H2O)6⋯Cl](n−1)+ (M = Na and Ca, n = 1 for Na and 2 for Ca) by density functional calculations , 1993 .

[48]  J. Deventer,et al.  Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry , 2007 .

[49]  John L. Provis,et al.  Molecular mechanisms responsible for the structural changes occurring during geopolymerization: Multiscale simulation , 2012 .

[50]  J. Deventer,et al.  Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry , 2007 .

[51]  Haihong Li,et al.  Synthesis and mechanical properties of metakaolinite-based geopolymer , 2005 .

[52]  H. Rahier,et al.  Low-temperature synthesized aluminosilicate glasses: Part III Influence of the composition of the silicate solution on production, structure and properties , 1997 .

[53]  J. Wastiels,et al.  Low-temperature synthesized aluminosilicate glasses , 1996 .

[54]  Á. Palomo,et al.  Durability of alkali-activated fly ash cementitious materials , 2007 .