Solar activity effects of the ionosphere: A brief review

Solar radiation, which varies over multiple temporal scales, modulates remarkably the evolution of the ionosphere. The solar activity dependence of the ionosphere is a key and fundamental issue in ionospheric physics, providing information essential to understanding the variations in the ionosphere and its processes. Selected recent studies on solar activity effects of the ionosphere are briefly reviewed in this report. This report focuses on (1) observations of solar irradiance at X-ray and extreme ultraviolet wavelengths and the outstanding problems of solar proxies, in the view of ionospheric studies, (2) new findings and improved representations of the features of the solar activity dependence of ionospheric key parameters and the corresponding physical processes, (3) possible phenomena in the ionosphere under extremely high and low solar activity conditions that are unique, as indicated by historical solar datasets and the deep solar minimum of solar cycle 23/24, and (4) statistical studies and model simulations of the ionosphere response to solar flares. The above-mentioned studies provide new clues for comprehensively explaining basic processes in the ionosphere and improving the prediction capability of ionospheric models and related applications.

[1]  T. Ogawa,et al.  Solar cycle variations of the thermospheric meridional wind over Japan derived from measurements of h m F 2 , 1999 .

[2]  Biqiang Zhao,et al.  Statistical characteristics of the total ion density in the topside ionosphere during the period 1996-2004 using empirical orthogonal function (EOF) analysis , 2005 .

[3]  T. Woods,et al.  HEUVAC: A new high resolution solar EUV proxy model , 2006 .

[4]  Michael Sabel,et al.  Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral gliomas , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[5]  E. L. Afraimovich,et al.  GPS global detection of the ionospheric response to solar flares , 2000, physics/0007026.

[6]  Libo Liu,et al.  An analysis of the scale heights in the lower topside ionosphere based on the Arecibo incoherent scatter radar measurements , 2007 .

[7]  Hong Yuan,et al.  The GPS measured SITEC caused by the very intense solar flare on July 14, 2000 , 2005 .

[8]  L. C. Herring,et al.  Solar EUV and UV spectral irradiances and solar indices , 2005 .

[9]  Hermann Lühr,et al.  Climatology of the equatorial thermospheric mass density anomaly , 2007 .

[10]  J. Chum,et al.  Hysteresis in dependence of foF2 on solar indices , 1996 .

[11]  Gary J. Rottman,et al.  The SOLAR2000 empirical solar irradiance model and forecast tool , 2000 .

[12]  P. Bradley,et al.  Solar-cycle variation of the daily foF2 and M(3000)F2 , 1998 .

[13]  D. Bedo,et al.  The EUV spectrophotometer on Atmosphere Explorer. , 1973 .

[14]  D. Bilitza The importance of EUV indices for the international reference ionosphere , 2000 .

[15]  J. Chum,et al.  HYSTERESIS IN DEPENDENCE OF foF 2 ON SOLAR INDICES , 2003 .

[16]  Jann‐Yenq Liu,et al.  Statistical investigation of the saturation effect of sunspot on the ionospheric foF2 , 2000 .

[17]  V. Safargaleev,et al.  TV observations of multiple arcs in pulsating and diffuse auroras , 2000 .

[18]  Libo Liu,et al.  A study of the ionogram derived effective scale height around the ionospheric hm F2 , 2006 .

[19]  Sean Bruinsma,et al.  Solar Rotation Effects on the Thermospheres of Mars and Earth , 2006, Science.

[20]  V. Truhlík,et al.  Manifestation of solar activity in the global topside ion composition − a study based on satellite data , 2005 .

[21]  J. Liu,et al.  Statistical investigation of the saturation effect in the ionospheric foF 2 versus sunspot , solar radio noise , and solar EUV radiation , 2003 .

[22]  Matthew T. DeLand,et al.  The influence of the several very large solar proton events in years 2000–2003 on the neutral middle atmosphere , 2005 .

[23]  I. V. Zhivetiev,et al.  Global electron content: a new conception to track solar activity , 2008 .

[24]  B. Iijima,et al.  Global response of the low‐latitude to midlatitude ionosphere due to the Bastille Day flare , 2005 .

[25]  Judith L. Lean,et al.  Solar ultraviolet irradiance variations: A review , 1987 .

[26]  J. Sojka,et al.  Behavior of the ionosphere and thermosphere subject to extreme solar cycle conditions , 2005 .

[27]  Wenbin Wang,et al.  Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices , 2009 .

[28]  A. Galvin,et al.  First‐year continuous solar EUV irradiance from SOHO by the CELIAS/SEM during 1996 solar minimum , 1998 .

[29]  R. Y. Liu,et al.  A new solar index which leads to improved foF2 predictions using the CCIR Atlas. , 1983 .

[30]  Libo Liu,et al.  Variations of electron density based on long‐term incoherent scatter radar and ionosonde measurements over Millstone Hill , 2005 .

[31]  R. Lundin,et al.  Solar activity explored with new wavelet methods , 2003 .

[32]  S. Kirkwood,et al.  The influence of ozone concentration on the lower ionosphere – modelling and measurements during the 29–30 October 2003 solar proton event , 2009 .

[33]  Bin Chen,et al.  Modeling the responses of the middle latitude ionosphere to solar flares , 2007 .

[34]  J. Titheridge The electron content of the southern mid-latitude ionosphere, 1965-1971. , 1973 .

[35]  Zuo Xiao,et al.  Study of the ionospheric total electron content response to the great flare on 15 April 2001 using the International GPS Service network for the whole sunlit hemisphere , 2003 .

[36]  W. Weixing,et al.  Climatological analysis and modeling of the ionospheric global electron content , 2008 .

[37]  N. O. Adler,et al.  Solar cycle hysteresis on F-region electron concentration peak heights over Tucuman , 1995 .

[38]  L. Kersley,et al.  Behavior of the ionospheric F region during the Great Solar Flare of August 7, 1972 , 1974 .

[39]  Yuei-An Liou,et al.  Ionospheric solar flare effects monitored by the ground‐based GPS receivers: Theory and observation , 2004 .

[40]  W. Tobiska Validating the solar EUV Proxy, E10.7 , 2001 .

[41]  K. Igarashi,et al.  GPS‐derived ionospheric total electron content response to a solar flare that occurred on 14 July 2000 , 2002 .

[42]  R. P. Kane Fluctuations in the ∼27-day sequences in the solar index F10 during solar cycles 22–23 , 2003 .

[43]  Libo Liu,et al.  Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations , 2009 .

[44]  R. Moffett,et al.  Modeling studies of ionospheric variations during an intense solar cycle , 1994 .

[45]  S. Watanabe,et al.  Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP , 2007 .

[46]  R. Viereck,et al.  The Mg II index: A proxy for solar EUV , 2001 .

[47]  W. Wan,et al.  Solar activity variations of equivalent winds derived from global ionosonde data , 2004 .

[48]  R. P. Kane Sunspots, solar radio noise, solar EUV and ionospheric foF2. , 1992 .

[49]  P. Bradley,et al.  Solar-cycle variation of the daily , 1998 .

[50]  X. Moussas,et al.  Solar cycles: A tutorial , 2005 .

[51]  Jann‐Yenq Liu,et al.  Statistical investigation of the saturation effect in the ionospheric foF2 versus sunspot, solar radio noise, and solar EUV radiation , 2003 .

[52]  B. Jenkins,et al.  Variations of ionospheric ionization and related solar fluxes during an intense solar cycle , 1994 .

[53]  M. Goel,et al.  Solar cycle variations of foF2 from IGY to 1990 , 2002 .

[54]  Beichen Zhang,et al.  Preliminary studies on ionospheric forecasting in China and its surrounding area , 2005 .

[55]  R. P. Kane Solar EUV and ionospheric parameters: A brief assessment , 2003 .

[56]  Hermann Lühr,et al.  Contrasting behavior of the thermosphere and ionosphere in response to the 28 October 2003 solar flare , 2007 .

[57]  W. Wan,et al.  Statistical modeling of ionospheric foF2 over Wuhan , 2004 .

[58]  A. Nusinov Ionosphere as a natural detector for investigations of solar EUV flux variations , 2006 .

[59]  J. Lean,et al.  Ionospheric and dayglow responses to the radiative phase of the Bastille Day flare , 2002 .

[60]  W. Wan,et al.  Solar activity dependence of effective winds derived from ionospheric data at Wuhan , 2003 .

[61]  V. Mikhailov,et al.  Solar cycle variations of annual mean noon foF2 , 1995 .

[62]  E. Sutton,et al.  Neutral density response to the solar flares of October and November, 2003 , 2006 .

[63]  William J. Burke,et al.  The 27-day variations of plasma densities and temperatures in the topside ionosphere , 2003 .

[64]  Zuo Xiao,et al.  The correlation of flare’s location on solar disc and the sudden increase of total electron content , 2002 .

[65]  Biqiang Zhao,et al.  Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes , 2007 .

[66]  Rajkumar Hajra,et al.  Solar control of ambient ionization of the ionosphere near the crest of the equatorial anomaly in the Indian zone , 2008 .

[67]  M. Shea,et al.  A summary of major solar proton events , 1990 .

[68]  Raj Korde,et al.  Measurements of the solar soft X‐ray irradiance by the Student Nitric Oxide Explorer: First analysis and underflight calibrations , 2000 .

[69]  N. O. Adler,et al.  Solar cycle length variation: its relation with ionospheric parameters , 1997 .

[70]  Thomas N. Woods,et al.  Effects of solar variability on thermosphere density from CHAMP accelerometer data , 2007 .

[71]  M. Dikpati,et al.  Predicting the strength of solar cycle 24 using a flux‐transport dynamo‐based tool , 2006 .

[72]  H. Le,et al.  Solar activity variations of nighttime ionospheric peak electron density: SOLAR ACTIVITY VARIATIONS OF NIGHTTIMENmF2 , 2008 .

[73]  M. Nicolls,et al.  Solar cycle variability of nighttime topside helium ion concentrations over Arecibo , 2004 .

[74]  John A. Eddy,et al.  The Maunder Minimum , 1976, Science.

[75]  Huang Yinn-Nien Solar cycle variation in the total electron content at Sagamore Hill. , 1978 .

[76]  P. Richards,et al.  EUVAC: A solar EUV Flux Model for aeronomic calculations , 1994 .

[77]  M. Codrescu,et al.  Solar activity variations in midlatitude thermospheric meridional winds , 1994 .

[78]  W. Wan,et al.  An empirical model of ionospheric foE over Wuhan , 2006 .

[79]  J. Lean,et al.  Variability of a composite chromospheric irradiance index during the 11‐year activity cycle and over longer time periods , 2001 .

[80]  Libo Liu,et al.  Solar activity variations of nighttime ionospheric peak electron density , 2006 .

[81]  Ronald F. Woodman,et al.  Dependence of equatorial F region vertical drifts on season and solar cycle , 1979 .

[82]  Z. Xiao,et al.  Study of the ionospheric TEC using GPS during the large solar flare burst on Nov. 6, 1997 , 2000 .

[83]  Zhensen Wu,et al.  Solar cycle variation of the monthly median foF2 at Chongqing station, China , 2008 .

[84]  A. Mannucci,et al.  The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event , 2005 .

[85]  D. J. Gorney,et al.  Solar cycle effects on the near‐Earth space environment , 1990 .

[86]  A. Dmitriev,et al.  Top-side ionosphere response to extreme solar events , 2006 .

[87]  V. Mikhailov,et al.  A new ionospheric index MF2 , 1995 .

[88]  Biqiang Zhao,et al.  The dependence of plasma density in the topside ionosphere on the solar activity level , 2007 .

[89]  B. J. Flaherty,et al.  Ionospheric electron content at temperate latitudes during the declining phase of the sunspot cycle , 1966 .

[90]  Bruce T. Tsurutani,et al.  The extreme magnetic storm of 1–2 September 1859 , 2003 .

[91]  O. Garriott,et al.  Measurements of the total electron content and the equivalent slab thickness of the midlatitude ionosphere. , 1965 .

[92]  W. Tobiska,et al.  Comparison of 10.7 cm radio flux with SME solar Lyman alpha flux , 1990 .

[93]  Judit Pap,et al.  Periodicities of solar irradiance and solar activity indices, I , 1990 .

[94]  Pencho Marinov,et al.  Model of topside ionosphere scale height based on topside sounder data , 2006 .

[95]  Libo Liu,et al.  Climatology of the mean total electron content derived from GPS global ionospheric maps , 2009 .

[96]  T. Frison Dynamics of the residuals in estuary water levels , 2000 .

[97]  R. Heelis,et al.  Solar activity variations in the composition of the low-latitude topside ionosphere , 1997 .

[98]  B. B. Troitsky,et al.  Ionospheric index of solar activity based on the data of measurements of the spacecraft signals characteristics , 2003 .

[99]  G. J. Bailey,et al.  Variations of the ionosphere and related solar fluxes during solar cycles 21 and 22 , 1996 .

[100]  Z. Xiao,et al.  Study of ionospheric response to the 4B flare on 28 October 2003 using International GPS Service network data , 2005 .

[101]  S. Fukao,et al.  Altitude dependencies in the solar activity variations of the ionospheric electron density , 1999 .

[102]  A. Hedin Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations , 1984 .

[103]  P. Richards Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and models , 2001 .

[104]  H. P. Warren,et al.  A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather , 2003 .