Nonhomogeneous Cahn–Hilliard fluids

Abstract In this paper we are interested in the study of a model of nonhomogeneous diphasic incompressible flow. More precisely we consider a coupling of a Cahn–Hilliard and an incompressible Navier–Stokes equations where the densities of the phases are different. For this general model we can only show the local existence of a unique very regular solution and the existence of weaker solutions is still an open problem. But, if we look at the behavior of the system when the densities tends to be equal (slightly nonhomogeneous case), we show the existence of a global weak solution and of a unique local strong solution (which is in fact global in 2D). Finally, an asymptotic stability result for the metastable states is shown in this slightly nonhomogeneous case.

[1]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[2]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[3]  Juncheng Wei,et al.  On the stationary Cahn-Hilliard equation bubble solutions , 1998 .

[4]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[5]  Coarse-grained Description of Thermo-capillary Ow Typeset Using Revt E X 1 , 2007 .

[6]  Akira Onuki Phase transitions of fluids in shear flow , 1997 .

[7]  Juncheng Wei,et al.  On the Stationary Cahn-Hilliard Equation: Interior Spike Solutions , 1998 .

[8]  Matthias Winter,et al.  Stationary solutions for the Cahn-Hilliard equation , 1998 .

[9]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[10]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[11]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[12]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[13]  A. Miranville A model of Cahn—Hilliard equation based on a microforce balance , 1999 .

[14]  Cornelius O. Horgan,et al.  Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..

[15]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[16]  M. Doi Dynamics of Domains and Textures , 1997 .

[17]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[18]  Peter W. Bates,et al.  Slow motion for the Cahn-Hilliard equation in one space dimension , 1991 .

[19]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[20]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[21]  Roger Temam,et al.  Some Global Dynamical Properties of a Class of Pattern Formation Equations , 1989 .

[22]  Arnaud Debussche,et al.  On the Cahn-Hilliard equation with a logarithmic free energy , 1995 .

[23]  David Jasnow,et al.  Coarse‐grained description of thermo‐capillary flow , 1996, patt-sol/9601004.

[24]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[25]  Franck Boyer,et al.  Mathematical study of multi‐phase flow under shear through order parameter formulation , 1999 .

[26]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.