Arithmetic properties of Apéry numbers
暂无分享,去创建一个
[1] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[2] F. Luca,et al. On the g-Ary Expansions of Apéry, Motzkin, Schröder and Other Combinatorial Numbers , 2010 .
[3] Florian Luca,et al. Prime divisors of binary holonomic sequences , 2008, Adv. Appl. Math..
[4] F. Luca,et al. ON THE SQUARE-FREE PARTS OF ⌊en!⌋ , 2007, Glasgow Mathematical Journal.
[5] Igor E. Shparlinski,et al. Catalan and Apéry numbers in residue classes , 2006, J. Comb. Theory, Ser. A.
[6] Emeric Deutsch,et al. Congruences for Catalan and Motzkin numbers and related sequences , 2004, math/0407326.
[7] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[8] W. Schmidt,et al. Linear equations in variables which Lie in a multiplicative group , 2002, math/0409604.
[9] Jan-Hendrik Evertse,et al. A quantitative version of the Absolute Subspace Theorem , 2002 .
[10] Adolf Hildebrand,et al. On the number of positive integers ≦ x and free of prime factors > y , 1986 .
[11] F. Beukers. Some Congruences for the Apery Numbers , 1985 .
[12] Florian Luca,et al. Prime factors of Motzkin numbers , 2006, Ars Comb..
[13] J. Evertse. An improvement of the quantitative subspace theorem , 1996 .