Riemannian Gaussian distributions, random matrix ensembles and diffusion kernels

We show that the Riemannian Gaussian distributions on symmetric spaces, introduced in recent years, are of standard random matrix type. We exploit this to compute analytically marginals of the probability density functions. This can be done fully, using Stieltjes-Wigert orthogonal polynomials, for the case of the space of Hermitian matrices, where the distributions have already appeared in the physics literature. For the case when the symmetric space is the space of $m \times m$ symmetric positive definite matrices, we show how to efficiently compute by evaluating Pfaffians at specific values of $m$. Equivalently, we can obtain the same result by constructing specific skew orthogonal polynomials with regards to the log-normal weight function (skew Stieltjes-Wigert polynomials). Other symmetric spaces are studied and the same type of result is obtained for the quaternionic case. Moreover, we show how the probability density functions are a particular case of diffusion reproducing kernels of the Karlin-McGregor type, describing non-intersecting Brownian motions, which are also diffusion processes in the Weyl chamber of Lie groups.

[1]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[2]  S. Majumdar,et al.  Extreme statistics and index distribution in the classical 1d Coulomb gas , 2018, Journal of Physics A: Mathematical and Theoretical.

[3]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[4]  C. Krattenthaler,et al.  Symmetry Classes , 1998 .

[5]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[6]  P. Moerbeke,et al.  The Pfaff lattice and skew-orthogonal polynomials , 1999, solv-int/9903005.

[7]  J. Baik,et al.  Combinatorics and Random Matrix Theory , 2016 .

[8]  P. Forrester Global and local scaling limits for the β = 2 Stieltjes–Wigert random matrix ensemble , 2020, Random Matrices: Theory and Applications.

[9]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[10]  J. Baik,et al.  Random matrix central limit theorems for nonintersecting random walks , 2006, math/0605212.

[11]  Yannick Berthoumieu,et al.  Warped Riemannian Metrics for Location-Scale Models , 2018, Geometric Structures of Information.

[12]  M. Katori,et al.  Oscillatory matrix model in Chern-Simons theory and Jacobi-theta determinantal point process , 2013, 1312.5848.

[13]  Matrix model as a mirror of Chern-Simons theory , 2002, hep-th/0211098.

[14]  Jonathan H. Manton,et al.  Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices , 2015, IEEE Transactions on Information Theory.

[15]  Gangyao Kuang,et al.  Target Recognition in SAR Images via Classification on Riemannian Manifolds , 2015, IEEE Geoscience and Remote Sensing Letters.

[16]  Brownian Motion, Chern-Simons Theory, and 2d Yang-Mills , 2004, hep-th/0406093.

[17]  Hongdong Li,et al.  Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Baba C. Vemuri,et al.  Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices , 2016, IEEE Transactions on Information Theory.

[19]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[20]  B. Afsari Riemannian Lp center of mass: existence, uniqueness, and convexity , 2011 .

[21]  Nicolas Le Bihan,et al.  Riemannian Gaussian Distributions on the Space of Positive-Definite Quaternion Matrices , 2017, GSI.

[22]  M. Tierz,et al.  Matrix models for classical groups and Toeplitz ± Hankel minors with applications to Chern–Simons theory and fermionic models , 2019, Journal of Physics A: Mathematical and Theoretical.

[23]  G. Schehr,et al.  Tracy-Widom Distributions for the Gaussian Orthogonal and Symplectic Ensembles Revisited: A Skew-Orthogonal Polynomials Approach , 2020, Journal of Statistical Physics.

[24]  M. Tierz Schur polynomials and biorthogonal random matrix ensembles , 2010 .

[25]  Olivier Schwander,et al.  From Node Embedding To Community Embedding : A Hyperbolic Approach , 2019, 1907.01662.

[26]  Christian Jutten,et al.  Multiclass Brain–Computer Interface Classification by Riemannian Geometry , 2012, IEEE Transactions on Biomedical Engineering.

[27]  Scaling limit of vicious walks and two-matrix model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  P. Forrester,et al.  Classical Skew Orthogonal Polynomials and Random Matrices , 1999, solv-int/9907001.

[29]  Ivan Ovinnikov,et al.  Poincaré Wasserstein Autoencoder , 2019, ArXiv.

[30]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[31]  Rui Caseiro,et al.  A nonparametric Riemannian framework on tensor field with application to foreground segmentation , 2011, 2011 International Conference on Computer Vision.

[32]  Yee Whye Teh,et al.  Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders , 2019, NeurIPS.

[33]  M. Mariño Les Houches lectures on matrix models and topological strings , 2004, hep-th/0410165.

[34]  Jiwu Huang,et al.  Fast and accurate Nearest Neighbor search in the manifolds of symmetric positive definite matrices , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[35]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[36]  Michael E. Fisher,et al.  Walks, walls, wetting, and melting , 1984 .

[37]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[38]  Harmonic Analysis on Symmetric Spaces and Applications II (Audrey Terras) , 1987 .

[39]  David J. Grabiner Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices , 1997, math/9708207.

[40]  G. Walter Properties of Hermite Series Estimation of Probability Density , 1977 .

[41]  Frederic Barbaresco,et al.  Stochastic algorithms for computing p-means of probability measures, geometry of radar Toeplitz covariance matrices and applications to HR Doppler processing , 2011, 2011 12th International Radar Symposium (IRS).

[42]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[43]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[44]  J. R. Ipsen,et al.  Orthogonal and symplectic Harish-Chandra integrals and matrix product ensembles , 2017, Random Matrices: Theory and Applications.

[45]  Xiang-Ke Chang,et al.  Partial-Skew-Orthogonal Polynomials and Related Integrable Lattices with Pfaffian Tau-Functions , 2017, Communications in Mathematical Physics.

[46]  S. Majumdar,et al.  Exact Extremal Statistics in the Classical 1D Coulomb Gas. , 2017, Physical review letters.

[47]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[48]  Pierpaolo Vivo,et al.  Introduction to Random Matrices: Theory and Practice , 2017, 1712.07903.

[49]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[50]  Makoto Katori,et al.  Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems , 2004 .

[51]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[52]  M. Schmaltz,et al.  Supersymmetric Gauge Theories , 2010 .

[53]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[54]  P. Forrester Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–1883 , 2018, Random Matrices: Theory and Applications.

[55]  C. Atkinson Rao's distance measure , 1981 .

[56]  N. Rescher The Threefold Way , 1987 .

[57]  M. Katori Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model , 2016 .

[58]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[59]  R. Bhatia Positive Definite Matrices , 2007 .

[60]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[61]  Michael Wimmer,et al.  Algorithm 923: Efficient Numerical Computation of the Pfaffian for Dense and Banded Skew-Symmetric Matrices , 2011, TOMS.

[62]  Harrie Hendriks,et al.  Nonparametric Estimation of a Probability Density on a Riemannian Manifold Using Fourier Expansions , 1990 .

[63]  Georgios Giasemidis,et al.  Torus Knot Polynomials and Susy Wilson Loops , 2014, 1401.8171.

[64]  E. Rabinovici,et al.  Supersymmetric Gauge Theories , 2002 .

[65]  M. Tierz SOFT MATRIX MODELS AND CHERN–SIMONS PARTITION FUNCTIONS , 2002, hep-th/0212128.

[66]  Maher Moakher On the Averaging of Symmetric Positive-Definite Tensors , 2006 .

[67]  Marc Arnaudon,et al.  Riemannian Medians and Means With Applications to Radar Signal Processing , 2013, IEEE Journal of Selected Topics in Signal Processing.

[68]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[69]  Chern-Simons matrix models and Stieltjes-Wigert polynomials , 2006, hep-th/0609167.

[70]  Baba C. Vemuri,et al.  A Novel Dynamic System in the Space of SPD Matrices with Applications to Appearance Tracking , 2013, SIAM J. Imaging Sci..

[71]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  M. Tierz,et al.  Unitary Chern-Simons matrix model and the Villain lattice action , 2011, 1103.2421.

[73]  Random matrix theory and symmetric spaces , 2003, cond-mat/0304363.

[74]  de Ng Dick Bruijn On some multiple integrals involving determinants , 1955 .

[75]  P. Forrester Properties of an exact crystalline many-body ground state , 1994 .

[76]  Armin Schwartzman,et al.  Lognormal Distributions and Geometric Averages of Symmetric Positive Definite Matrices , 2016, International statistical review = Revue internationale de statistique.

[77]  P. Forrester Vicious random walkers in the limit of a large number of walkers , 1989 .

[78]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[79]  M. Arnaudon,et al.  Stochastic algorithms for computing means of probability measures , 2011, 1106.5106.

[80]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[81]  P. Forrester Log-Gases and Random Matrices , 2010 .

[82]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[83]  R. J. Szabo,et al.  Supersymmetric gauge theories, Coulomb gases and Chern-Simons matrix models , 2013, 1310.3122.