Efficient and Scalable Calculation of Complex Band Structure using Sakurai-Sugiura Method

Complex band structures (CBSs) are useful to characterize the static and dynamical electronic properties of materials. Despite the intensive developments, the first-principles calculation of CBS for over several hundred atoms are still computationally demanding. We here propose an efficient and scalable computational method to calculate CBSs. The basic idea is to express the Kohn-Sham equation of the real-space grid scheme as a quadratic eigenvalue problem and compute only the solutions which are necessary to construct the CBS by Sakurai-Sugiura method. The serial performance of the proposed method shows a significant advantage in both run-time and memory usage compared to the conventional method. Furthermore, owing to the hierarchical parallelism in Sakurai-Sugiura method and the domain-decomposition technique for real-space grids, we can achieve an excellent scalability in the CBS calculation of a boron and nitrogen doped carbon nanotube consisting of more than 10,000 atoms using 2,048 nodes (139,264 cores) of Oakforest-PACS.

[1]  Jerry Tersoff,et al.  Theory of semiconductor heterojunctions: The role of quantum dipoles , 1984 .

[2]  Tetsuya Sakurai,et al.  A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method , 2008, J. Comput. Appl. Math..

[3]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[4]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[5]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[6]  J D Burton,et al.  Complex band structure of topological insulator Bi2Se3 , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Tetsuya Sakurai,et al.  A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems , 2014, Appl. Math. Lett..

[8]  Changwon Park,et al.  Decay behavior of localized states at reconstructed armchair graphene edges , 2013, 1304.0314.

[9]  C. Kittel Introduction to solid state physics , 1954 .

[10]  Tomoya Ono,et al.  First-principles transport calculation method based on real-space finite-difference nonequilibrium Green's function scheme , 2012, 1207.4317.

[11]  Tongsheng Xia,et al.  Calculations and applications of the complex band structure for carbon nanotube field-effect transistors , 2004 .

[12]  Hiroshi Ishida,et al.  Relationship between embedding-potential eigenvalues and topological invariants of time-reversal invariant band insulators , 2016 .

[13]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[14]  E. Tsymbal,et al.  Negative spin polarization and large tunneling magnetoresistance in epitaxial Co/SrTiO(3)/Co magnetic tunnel junctions. , 2005, Physical review letters.

[15]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[16]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[17]  Yoshitaka Fujimoto,et al.  First-principles treatments of electron transport properties for nanoscale junctions , 2003 .

[18]  Wu,et al.  Higher-order finite-difference pseudopotential method: An application to diatomic molecules. , 1994, Physical review. B, Condensed matter.

[19]  V. Heine,et al.  Some theory about surface states , 1964 .

[20]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[21]  Tomoya Ono,et al.  Real-space method for first-principles electron-transport calculations: self-energy terms of electrodes for large systems , 2016 .

[22]  Tomoya Ono,et al.  Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations , 1999 .

[23]  P. Dederichs,et al.  Complex band structure and tunneling through ferromagnet /Insulator /Ferromagnet junctions , 2000, Physical review letters.

[24]  Stephanie Reich,et al.  Nanotube bundles and tube-tube orientation: A van der Waals density functional study , 2011, 1207.4654.

[25]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[26]  Tetsuya Sakurai,et al.  Block Krylov-type complex moment-based eigensolvers for solving generalized eigenvalue problems , 2017, Numerical Algorithms.

[27]  Yousef Saad,et al.  PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[28]  Tetsuya Sakurai,et al.  CONTOUR INTEGRAL EIGENSOLVER FOR NON-HERMITIAN SYSTEMS: A RAYLEIGH-RITZ-TYPE APPROACH , 2010 .

[29]  Yia-Chung Chang,et al.  Complex band structures of crystalline solids: An eigenvalue method , 1982 .

[30]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[31]  Christian Thomsen,et al.  Electronic band structure of isolated and bundled carbon nanotubes , 2002 .

[32]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[33]  Raymond H. Chan,et al.  A FEAST algorithm with oblique projection for generalized eigenvalue problems , 2014, Numer. Linear Algebra Appl..

[34]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[35]  Stefan Blügel,et al.  Ab initio Green-function formulation of the transfer matrix: Application to complex band structures , 2002 .

[36]  Yia-Chung Chang,et al.  New method for calculating electronic properties of superlattices using complex band structures , 1981 .

[37]  Susumu Saito,et al.  Pressure and Orientation Effects on the Electronic Structure of Carbon Nanotube Bundles , 2001 .

[38]  Tetsuya Sakurai,et al.  Relationships among contour integral-based methods for solving generalized eigenvalue problems , 2016 .

[39]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[40]  A. Umerski,et al.  Closed-form solutions to surface Green's functions , 1997 .

[41]  Giorgos Fagas,et al.  Complex-band structure: a method to determine the off-resonant electron transport in oligomers , 2004 .

[42]  広瀬 喜久治,et al.  First-principles calculations in real-space formalism : electronic configurations and transport properties of nanostructures , 2005 .

[43]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[44]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[45]  Nobutsugu Minami,et al.  Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films , 2000 .

[46]  John D. Joannopoulos,et al.  Simple scheme for surface-band calculations. I , 1981 .

[47]  Mark A. Ratner,et al.  Probing the surface-to-bulk transition: A closed-form constant-scaling algorithm for computing subsurface Green functions , 2011 .

[48]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[49]  Guojian Yin,et al.  A randomized FEAST algorithm for generalized eigenvalue problems , 2016, 1612.03300.

[50]  John D. Burton,et al.  Complex band structure of topologically protected edge states , 2014 .

[51]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[52]  John D. Burton,et al.  Complex Band Structure of the Topological Insulator Bi$_{2}$Se$_{3}$ , 2015 .

[53]  Tetsuya Sakurai,et al.  Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method , 2013, Parallel Comput..