Hubble Space Telescope Imaging and Keck Spectroscopy of z ≈ 6 i-Band Dropout Galaxies in the Advanced Camera for Surveys GOODS Fields

We measure the surface density of i'-band dropout galaxies at z ~ 6 through wide-field Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging and ultradeep Keck DEIMOS spectroscopy. Using deep HST ACS SDSS i' (F775W) and SDSS z' (F850LP) imaging from the Great Observatories Origins Deep Survey-North (GOODS-N; 200 arcmin2), we identify nine i'-drops satisfying (i'-z')AB > 1.5 to a depth of zimg1.gif = 25.6 (corresponding to Limg2.gif at z ~ 3). We use HK' imaging data to improve the fidelity of our sample, discriminating against lower redshift red galaxies and cool Galactic stars. Three i'-drops are consistent with M/L/T dwarf stars. We present ultradeep Keck DEIMOS spectroscopy of 10 objects from our combined GOODS-N and GOODS-S i'-drop sample. We detect Lyα emission at z = 5.83 from one object in the GOODS-S field, which lies only 8' (i.e., 3 himg3.gif Mpc) away from a previously confirmed z = 5.78 object. One possible Lyα emitter at z = 6.24 is found in the GOODS-N field (although identification of this spatially offset emission line is ambiguous). Using the rest-frame UV continuum from our six candidate z ~ 6 galaxies from the GOODS-N field, we determine a lower limit to the unobscured volume-averaged global star formation rate at z ~ 6 of (5.4 ± 2.2) × 10-4 h70 M☉ yr-1 Mpc-3. We find that the cosmic star formation density in Lyman break galaxies (LBGs) with unobscured star formation rates greater than 15 M☉ yr-1 falls by a factor of 8 between z ~ 3 and z ~ 6. Hence, the luminosity function of LBGs must evolve in this redshift interval: a constant integrated star formation density at z > 3 requires a much steeper faint-end slope, or a brighter characteristic luminosity. This result is in agreement with our previous measurement from the GOODS-S field, indicating that cosmic variance is not a dominant source of uncertainty.

[1]  F. Nakamura,et al.  The Stellar Initial Mass Function in Primordial Galaxies , 2002, astro-ph/0201497.

[2]  D. M. Alexander,et al.  Optical and Infrared Properties of the 2 Ms Chandra Deep Field North X-Ray Sources , 2003, astro-ph/0306212.

[3]  ROBERT E. Williams,et al.  The Hubble Deep Field: Observations, Data Reduction, and , 1996, astro-ph/9607174.

[4]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[5]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[6]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[7]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[8]  Rodger I. Thompson,et al.  Near-Infrared Camera and Multi-Object Spectrometer Observations of the Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry , 1999 .

[9]  et al,et al.  The Discovery of Two Lyman α Emitters beyond Redshift 6 in the Subaru Deep Field , 2003 .

[10]  I. Neill Reid,et al.  Near-Infrared Spectral Classification of Late M and L Dwarfs , 2000, astro-ph/0012275.

[11]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[12]  A. Fernandez-Soto,et al.  A New Catalog of Photometric Redshifts in the Hubble Deep Field , 1999 .

[13]  S. Phleps,et al.  Constraints to the evolution of Ly-α bright galaxies between z = 3 and z = 6 , 2003, astro-ph/0302113.

[14]  The Population of Faint Optically Selected Active Galactic Nuclei at z ~ 3 , 2002, astro-ph/0205142.

[15]  M. Giavalisco,et al.  A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North , 2003, astro-ph/0312635.

[16]  Department of Physics,et al.  accepted for publication in the Astrophysical Journal Luminous Lyman Break Galaxies at z>5 and the Source of , 2003 .

[17]  Johns Hopkins University,et al.  Characterization of M, L, and T Dwarfs in the Sloan Digital Sky Survey , 2002, astro-ph/0204065.

[18]  M. Pettini,et al.  Lyman Limit Imaging of High Redshift Galaxies. III. New Observations of 4 QSO Fields , 1995 .

[19]  N. Roche,et al.  Galaxy surface brightness and size evolution to Z of about 4 , 1998 .

[20]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[21]  R. Bouwens,et al.  Star Formation at z ~ 6: i-Dropouts in the Advanced Camera for Surveys Guaranteed Time Observation Fields , 2003 .

[22]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[23]  K. Aoki,et al.  Lyman Break Galaxies at z ∼ 5: Luminosity Function , 2003, astro-ph/0301084.

[24]  M. Skrutskie,et al.  L Dwarfs and the Substellar Mass Function , 1999, astro-ph/9905170.

[25]  A. Fontana,et al.  A European Southern Observatory Very Large Telescope Survey of Near-Infrared (Z ≤ 25) Selected Galaxies at Redshifts 4.5 < z < 6: Constraining the Cosmic Star Formation Rate near the Reionization Epoch , 2003 .

[26]  Alexander S. Szalay,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[27]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[28]  Ralf Bender,et al.  The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .

[29]  David G. Monet,et al.  Dwarfs Cooler than “M”: The Definition of Spectral Type “L” Using Discoveries from the 2-Micron All-Sky Survey (2MASS) , 1999 .

[30]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[31]  LYMANα EMITTERS BEYOND REDSHIFT 5: THE DAWN OF GALAXY FORMATION , 2003, astro-ph/0306409.

[32]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[33]  R. Bouwens,et al.  Star Formation at z~6: i-dropouts in the ACS GTO fields , 2003, astro-ph/0306215.

[34]  L. Moustakas,et al.  Resolving the Stellar Populations in a z=4 Lensed Galaxy , 1997, astro-ph/9712173.

[35]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[36]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[37]  Cambridge,et al.  Lyman break galaxies and the star formation rate of the Universe at z≈ 6 , 2003 .

[38]  D. Calzetti Reddening and star formation in starburst galaxies , 1996, astro-ph/9610184.

[39]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[40]  M. Livio,et al.  Star Formation at the Twilight of the Dark Ages: Which Stars Reionized the Universe? , 2003, astro-ph/0303017.

[41]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[42]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[43]  C. Leitherer,et al.  The Panchromatic Starburst Intensity Limit at Low and High Redshift , 1997, astro-ph/9704077.

[44]  Garth D. Illingworth,et al.  Cloning Dropouts: Implications for Galaxy Evolution at High Redshift , 2003 .

[45]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[46]  R. J. Brunner,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997 .

[47]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[48]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[49]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[50]  NOAO,et al.  Color-selected galaxies at Z 6 in the great observatories origins deep survey , 2004 .

[51]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[52]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[53]  et al,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[54]  N. Vogt,et al.  Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.

[55]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[56]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[57]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[58]  G. Zamorani,et al.  The K20 survey - I. Disentangling old and dusty star-forming galaxies in the ERO population , 2001 .

[59]  The Dust in Lyman Break Galaxies , 2003, astro-ph/0301121.