Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites

[1]  G. Bagheri The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles , 2016 .

[2]  Shichao Liu,et al.  Fabrication of woven carbon fibers reinforced Al–Mg (95–5 wt%) matrix composites by an electromagnetic casting process , 2015 .

[3]  K. Říha,et al.  Minimal prerequisites for measuring two-dimensional contour roundness in a particle classification context , 2015 .

[4]  L. Deng,et al.  Roles of minor rare-earth elements addition in formation and properties of Cu–Zr–Al bulk metallic glasses , 2015 .

[5]  Wei Wang,et al.  Effects of trace La additions on the microstructures and properties of nanoprecipitates strengthened Cu–Zr alloys , 2015 .

[6]  Wei Wang,et al.  In situ synthesis of TiB2 particulate reinforced copper matrix composite with a rotating magnetic field , 2015 .

[7]  Hong-wu Song,et al.  Effects of lanthanum addition on microstructure and mechanical properties of as-cast pure copper , 2014 .

[8]  D. Božić,et al.  Synthesis, microstructure and mechanical properties of ZrB2 nano and microparticle reinforced copper matrix composite by in situ processings , 2014 .

[9]  Huijun Kang,et al.  Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part I: An improved halide salt route to fabricate Al–5 wt%TiB2 master composite , 2014 .

[10]  Huijun Kang,et al.  Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part II: Enhancing the practical aluminum foundry alloys using the improved Al–5 wt%TiB2 master composite upon dilution , 2014 .

[11]  Yi Wu,et al.  Mechanical properties of in-situ TiB2/A356 composites , 2014 .

[12]  J. Silvain,et al.  Hardness and Young's modulus behavior of Al composites reinforced by nanometric TiB2 elaborated by mechanosynthesis , 2014 .

[13]  Jiancheng Tang,et al.  A novel approach for strengthening Cu–Y2O3 composites by in situ reaction at liquidus temperature , 2013 .

[14]  R. Brydson,et al.  Effects of in situ formation of TiB2 particles on age hardening behavior of Cu-1wt% Ti-1wt% TiB2 , 2013 .

[15]  Weijia Wang,et al.  A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu–Sn alloys , 2012 .

[16]  K. Lu,et al.  The Future of Metals , 2010, Science.

[17]  M. Guo,et al.  Relationship between microstructure, properties and reaction conditions for Cu-TiB2 alloys prepared by in situ reaction , 2009 .

[18]  Yun Chen,et al.  Effects of rare earth elements on annealing characteristics of Cu–6 wt.% Fe composites , 2009 .

[19]  M. Guo,et al.  Synthesis of nano TiB2 particles in copper matrix by in situ reaction of double-beam melts , 2008 .

[20]  Y. Tang,et al.  Study of rare earth elements on the physical and mechanical properties of a Cu–Fe–P–Cr alloy , 2008 .

[21]  J. Yun,et al.  Manufacturing of Cu-TiB2 composites by turbulent in situ mixing process , 2007 .

[22]  D. Dudina,et al.  Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites , 2007 .

[23]  Yifu Shen,et al.  Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering , 2007 .

[24]  E. Machlin Heterophase and Homophase Fluctuations , 2007 .

[25]  Shi-jie,et al.  Application of Lanthanum in High Strength and High , 2006 .

[26]  Yang Yuxin,et al.  Effects of substrate local strain on microstructure of electrodeposited aluminum film , 2006 .

[27]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[28]  Han Jiecai Study on the behavior in thermal shock and ablation resistance of TiC-TiB2/Cu ceramic-matrix composite , 2003 .

[29]  J. Tu,et al.  Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing , 2002 .

[30]  Sie Chin Tjong,et al.  Microstructural and mechanical characteristics of in situ metal matrix composites , 2000 .

[31]  Deliang Zhang,et al.  Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling , 2000 .

[32]  I. Chang,et al.  Selective laser sintering of gas and water atomized high speed steel powders , 1999 .

[33]  T. Chow Wetting of rough surfaces , 1998 .

[34]  J. Legoux,et al.  Synthesis of TiB2 in liquid copper , 1994 .

[35]  D. G. Morris,et al.  Mechanical alloying of high-strength copper alloys containing TiB2 and Al2O3 dispersoid particles , 1994 .

[36]  P. Withers,et al.  An introduction to metal matrix composites , 1993 .

[37]  N. Suh,et al.  Liquid-metal mixing process tailors MMC microstructures , 1992 .

[38]  F. J. Humphreys,et al.  Strengthening mechanisms in particulate metal matrix composites , 1991 .

[39]  Farghalli A. Mohamed,et al.  Particulate reinforced metal matrix composites — a review , 1991, Journal of Materials Science.

[40]  E. Lilley,et al.  Morphology of Divalent Cation Precipitates in Alkali Halide Single Crystals , 1975 .

[41]  W. E. Lawrence,et al.  Electron-Electron Scattering in the Transport Coefficients of Simple Metals , 1973 .

[42]  B. Lengeler,et al.  Deviations from Matthiessen's rule and longitudinal magnetoresistance in copper , 1970 .

[43]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.