Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

[1]  D. Fang,et al.  Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit , 2016 .

[2]  H. Görls,et al.  Ba1−xSrxZn2Si2O7 - A new family of materials with negative and very high thermal expansion , 2015, Scientific Reports.

[3]  C. Steeves,et al.  Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures , 2015 .

[4]  Michael E. Plesha,et al.  Controllable thermal expansion of large magnitude in chiral negative Poisson's ratio lattices , 2015 .

[5]  H. Wadley,et al.  Mechanical response of Ti–6Al–4V octet-truss lattice structures , 2015 .

[6]  Konrad Engel,et al.  Recursive least squares with linear inequality constraints , 2015 .

[7]  Y. Kanno,et al.  Optimal design of periodic frame structures with negative thermal expansion via mixed integer programming , 2015 .

[8]  Yi Wang,et al.  Thermal Expansion Anomaly Regulated by Entropy , 2014, Scientific Reports.

[9]  C. Steeves,et al.  Bimaterial lattices with anisotropic thermal expansion , 2014 .

[10]  Eleftherios E. Gdoutos,et al.  Thin Films with Ultra‐low Thermal Expansion , 2014, Advanced materials.

[11]  Roderic S. Lakes,et al.  Stiff, strong, zero thermal expansion lattices via material hierarchy , 2014 .

[12]  Damiano Pasini,et al.  Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods , 2013 .

[13]  T. Lim Negative thermal expansion in transversely isotropic space frame trusses , 2013 .

[14]  R. Lakes,et al.  Stiff, strong zero thermal expansion lattices via the Poisson effect , 2013 .

[15]  Jonathan B. Hopkins,et al.  Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies , 2013 .

[16]  A. Shapiro,et al.  Thin and Thermally Stable Periodic Metastructures , 2013 .

[17]  C. Ding,et al.  One-Dimensional Al4O4C Ceramics: A New Type of Blue Light Emitter , 2013, Scientific Reports.

[18]  Nunzio Palumbo Trusses with reduced thermal expansion : their design, and mass and stiffness penalties , 2013 .

[19]  Roderic S. Lakes,et al.  Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization , 2013 .

[20]  A. Evans,et al.  The Design of Bonded Bimaterial Lattices that Combine Low Thermal Expansion with High Stiffness , 2011 .

[21]  K. Evans,et al.  Near-zero thermal expansivity 2-D lattice structures: Performance in terms of mass and mechanical properties , 2011 .

[22]  T. Lim Negative thermal expansion structures constructed from positive thermal expansion trusses , 2011, Journal of Materials Science.

[23]  Michael F. Ashby,et al.  Chapter 5 – Materials Selection—The Basics , 2011 .

[24]  Triplicane A. Parthasarathy,et al.  Tailorable thermal expansion hybrid structures , 2009 .

[25]  A. Evans,et al.  Experimental investigation of the thermal properties of tailored expansion lattices , 2009 .

[26]  Kenneth E. Evans,et al.  A generalised scale-independent mechanism for tailoring of thermal expansivity: Positive and negative , 2008 .

[27]  Anthony G. Evans,et al.  Concepts for structurally robust materials that combine low thermal expansion with high stiffness , 2007 .

[28]  Joseph N. Grima,et al.  A system with adjustable positive or negative thermal expansion , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  R. Lakes Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude , 2007 .

[30]  Ruben Gatt,et al.  Connected Triangles Exhibiting Negative Poisson's Ratios and Negative Thermal Expansion , 2007 .

[31]  J. Aboudi,et al.  Micromechanical analysis of lattice blocks , 2005 .

[32]  T. Lim Anisotropic and negative thermal expansion behavior in a cellular microstructure , 2005 .

[33]  John W. Halloran,et al.  Negative thermal expansion artificial material from iron-nickel alloys by oxide co-extrusion with reductive sintering , 2004 .

[34]  W. Clegg,et al.  Tailoring strains through microstructural design , 2003 .

[35]  David G. Gilmore,et al.  Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies , 2002 .

[36]  Wolfgang R. Fahrner,et al.  Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications , 2001, IEEE Trans. Ind. Electron..

[37]  S. Torquato,et al.  Composites with extremal thermal expansion coefficients , 1996 .

[38]  Roderic S. Lakes,et al.  Cellular solid structures with unbounded thermal expansion , 1996 .

[39]  D. Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[40]  Brian Coe,et al.  The positive and the negative , 1983, Nature.