Test Score Algorithms for Budgeted Stochastic Utility Maximization

Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of using test scores, defined as a statistic of observed individual item performance data, for solving the budgeted stochastic utility maximization problem. We extend an existing scoring mechanism, namely the replication test scores, to incorporate heterogeneous item costs as well as item values. We show that a natural greedy algorithm that selects items solely based on their replication test scores outputs solutions within a constant factor of the optimum for the class of functions satisfying an extended diminishing returns property. Our algorithms and approximation guarantees assume that test scores are noisy estimates of certain expected values with respect to marginal distributions of individual item values, thus making our algorithms practical and extending previous work that assumes noiseless estimates. Moreover, we show how our algorithm can be adapted to the setting where items arrive in a streaming fashion while maintaining the same approximation guarantee. We present numerical results, using synthetic data and data sets from the Academia.StackExchange Q&A forum, which show that our test score algorithm can achieve competitiveness, and in some cases better performance than a benchmark algorithm that requires access to a value oracle to evaluate function values.

[1]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..

[2]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[3]  Gérard Cornuéjols,et al.  Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..

[4]  T. Klastorin On a discrete nonlinear and nonseparable knapsack problem , 1990 .

[5]  P. P. Chakrabarti,et al.  A Simple 0.5-Bounded Greedy Algorithm for the 0/1 Knapsack Problem , 1992, Inf. Process. Lett..

[6]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[7]  Andreas Krause,et al.  Near-optimal Nonmyopic Value of Information in Graphical Models , 2005, UAI.

[8]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[9]  Joseph Naor,et al.  Improved bounds for online routing and packing via a primal-dual approach , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[10]  Tom Minka,et al.  TrueSkillTM: A Bayesian Skill Rating System , 2006, NIPS.

[11]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[12]  Oded Berman,et al.  Competitive facility location model with concave demand , 2007, Eur. J. Oper. Res..

[13]  Nicole Immorlica,et al.  A Knapsack Secretary Problem with Applications , 2007, APPROX-RANDOM.

[14]  Deeparnab Chakrabarty,et al.  Budget constrained bidding in keyword auctions and online knapsack problems , 2008, WINE.

[15]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Covering and Packing , 2009, Math. Oper. Res..

[16]  Hui Lin,et al.  Multi-document Summarization via Budgeted Maximization of Submodular Functions , 2010, NAACL.

[17]  Andreas Krause,et al.  Budgeted Nonparametric Learning from Data Streams , 2010, ICML.

[18]  Carlos Guestrin,et al.  Beyond keyword search: discovering relevant scientific literature , 2011, KDD.

[19]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[20]  Alper Atamtürk,et al.  Maximizing a class of submodular utility functions , 2011, Math. Program..

[21]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[22]  Hang Li Learning to Rank for Information Retrieval and Natural Language Processing , 2011, Synthesis Lectures on Human Language Technologies.

[23]  Nikhil R. Devanur,et al.  Near optimal online algorithms and fast approximation algorithms for resource allocation problems , 2011, EC '11.

[24]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[25]  Rishabh K. Iyer,et al.  Learning Mixtures of Submodular Functions for Image Collection Summarization , 2014, NIPS.

[26]  Jeff A. Bilmes,et al.  Submodularity for Data Selection in Statistical Machine Translation , 2014 .

[27]  Jeff A. Bilmes,et al.  Submodular subset selection for large-scale speech training data , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[28]  Andreas Krause,et al.  Streaming submodular maximization: massive data summarization on the fly , 2014, KDD.

[29]  Ken-ichi Kawarabayashi,et al.  Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm , 2014, ICML.

[30]  Amit Chakrabarti,et al.  Submodular maximization meets streaming: matchings, matroids, and more , 2013, Math. Program..

[31]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[32]  Jon M. Kleinberg,et al.  Team Performance with Test Scores , 2015, EC.

[33]  Kent Quanrud,et al.  Streaming Algorithms for Submodular Function Maximization , 2015, ICALP.

[34]  Rishabh K. Iyer,et al.  Submodularity in Data Subset Selection and Active Learning , 2015, ICML.

[35]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[36]  Yuichi Yoshida,et al.  A Generalization of Submodular Cover via the Diminishing Return Property on the Integer Lattice , 2015, NIPS.

[37]  Ajay Subramanian,et al.  Project Characteristics, Incentives and Team Production , 2014, Manag. Sci..

[38]  Yaron Singer,et al.  Maximization of Approximately Submodular Functions , 2016, NIPS.

[39]  Andreas Krause,et al.  Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization , 2015, AAAI.

[40]  Andreas Krause,et al.  Distributed Submodular Maximization , 2014, J. Mach. Learn. Res..

[41]  Shuguang Cui,et al.  Streaming Algorithms for News and Scientific Literature Recommendation: Submodular Maximization with a d-Knapsack Constraint , 2016, ArXiv.

[42]  Hamid Nazerzadeh,et al.  Maximizing Stochastic Monotone Submodular Functions , 2009, Manag. Sci..

[43]  Avinatan Hassidim,et al.  Submodular Optimization under Noise , 2016, COLT.

[44]  Amin Karbasi,et al.  Gradient Methods for Submodular Maximization , 2017, NIPS.

[45]  Yuichi Yoshida,et al.  Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint , 2017, Algorithmica.

[46]  Yang Yu,et al.  On Subset Selection with General Cost Constraints , 2017, IJCAI.

[47]  Andreas Krause,et al.  Stochastic Submodular Maximization: The Case of Coverage Functions , 2017, NIPS.

[48]  Andreas Krause,et al.  Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains , 2016, AISTATS.

[49]  Yang Yu,et al.  Subset Selection under Noise , 2017, NIPS.

[50]  Alper Atamtürk,et al.  Maximizing a Class of Utility Functions Over the Vertices of a Polytope , 2017, Oper. Res..

[51]  Andreas Krause,et al.  Streaming Non-monotone Submodular Maximization: Personalized Video Summarization on the Fly , 2017, AAAI.

[52]  Tim Roughgarden,et al.  Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization , 2018, NeurIPS.

[53]  Nicole Immorlica,et al.  Combinatorial Assortment Optimization , 2018, WINE.

[54]  Amin Karbasi,et al.  Do Less, Get More: Streaming Submodular Maximization with Subsampling , 2018, NeurIPS.

[55]  Amin Karbasi,et al.  Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap , 2017, AISTATS.

[56]  Huy L. Nguyen,et al.  A Nearly-linear Time Algorithm for Submodular Maximization with a Knapsack Constraint , 2019, ICALP.

[57]  Naonori Kakimura,et al.  Improved Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint , 2019, WADS.

[58]  Yuichi Yoshida,et al.  Maximizing a Monotone Submodular Function with a Bounded Curvature under a Knapsack Constraint , 2016, SIAM J. Discret. Math..

[59]  Takayuki Nishio,et al.  Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge , 2018, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[60]  Silvio Lattanzi,et al.  Submodular Streaming in All its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity , 2019, ICML.

[61]  Aranyak Mehta,et al.  Hitting the High Notes: Subset Selection for Maximizing Expected Order Statistics , 2020, NeurIPS.

[62]  Danny Segev,et al.  Constrained Assortment Optimization Under the Markov Chain-based Choice Model , 2020, Manag. Sci..

[63]  Amin Karbasi,et al.  Continuous Submodular Maximization: Beyond DR-Submodularity , 2020, NeurIPS.

[64]  Amin Karbasi,et al.  Streaming Submodular Maximization under a k-Set System Constraint , 2020, ICML.

[65]  Milan Vojnovic,et al.  A Test Score-Based Approach to Stochastic Submodular Optimization , 2020, Manag. Sci..