Exploring for Geothermal Resources with Electromagnetic Methods

Electrical conductivity of the subsurface is known to be a crucial parameter for the characterization of geothermal settings. Geothermal systems, composed by a system of faults and/or fractures filled with conducting geothermal fluids and altered rocks, are ideal targets for electromagnetic (EM) methods, which have become the industry standard for exploration of geothermal systems. This review paper presents an update of the state-of-the-art geothermal exploration using EM methods. Several examples of high-enthalpy geothermal systems as well as non-volcanic systems are presented showing the successful application of EM for geothermal exploration but at the same time highlighting the importance of the development of conceptual models in order to avoid falling into interpretation pitfalls. The integration of independent data is key in order to obtain a better understanding of the geothermal system as a whole, which is the ultimate goal of exploration.

[1]  Jimmy Randall,et al.  Robust Processing for Removing Train Signals from Magnetotelluric Data in Central Italy , 2004 .

[2]  M. Heizler,et al.  AR/AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD , 2003 .

[3]  Adele Manzella,et al.  Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area, Italy , 2003 .

[4]  A. Mwangi Eburru Geothermal Prospect, Kenya - Joint 1D inversion of MT and TEM Data , 2012 .

[5]  M. Meju Geoelectromagnetic Exploration For Natural Resources: Models, Case Studies And Challenges , 2002 .

[6]  MONITORING ENHANCED GEOTHERMAL FLUIDS WITH MAGNETOTELLURICS, TEST CASE: PARALANA, SOUTH AUSTRALIA. , 2012 .

[7]  INTEGRATED DENSE ARRAY AND TRANSECT MT SURVEYING AT DIXIE VALLEY GEOTHERMAL AREA , NEVADA ; STRUCTURAL CONTROLS , HYDROTHERMAL ALTERATION AND DEEP FLUID SOURCES , 2007 .

[8]  Gregory A. Newman,et al.  3D Magnetotelluric characterization of the COSO GeothermalField , 2007 .

[9]  Seiji Saito,et al.  Deep geothermal resources survey program: igneous, metamorphic and hydrothermal processes in a well encountering 500°C at 3729 m depth, kakkonda, japan , 1998 .

[10]  Eva Schill,et al.  2-D Magnetotellurics at the geothermal site at Soultz-sous-Forêts: Resistivity distribution to about 3000 m depth , 2010 .

[11]  C. Harvey,et al.  UNDERSTANDING THE RESISTIVITIES OBSERVED IN GEOTHERMAL SYSTEMS , 2000 .

[12]  A. Manzella,et al.  The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland , 2005 .

[13]  P. Calcagno,et al.  Estimating deep temperatures in the Soultz-sous-Forêts geothermal area (France) from magnetotelluric data , 2015 .

[14]  W. Cumming,et al.  Resistivity Imaging of Geothermal Resources Using 1D, 2D and 3D MT Inversion and TDEM Static Shift Correction Illustrated by a Glass Mountain Case History , 2010 .

[15]  M. Weber,et al.  Tomographic P wave velocity and vertical velocity gradient structure across the geothermal site Groß Schönebeck (NE German Basin): Relationship to lithology, salt tectonics, and thermal regime , 2010 .

[16]  Paul A. Bedrosian,et al.  Electrical conductivity images of active and fossil fault zones , 2005, Geological Society, London, Special Publications.

[17]  W. Cumming GEOTHERMAL RESOURCE CONCEPTUAL MODELS USING SURFACE EXPLORATION DATA , 2009 .

[18]  Fernando A. Monteiro Santos,et al.  2D joint inversion of dc and scalar audio-magnetotelluric data in the evaluation of low enthalpy geothermal fields , 2007 .

[19]  Todd G. Caldwell,et al.  Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation , 1995 .

[20]  C. Manoj,et al.  Magnetotelluric studies in Puga valley geothermal field, NW Himalaya, Jammu and Kashmir, India , 2004 .

[21]  G. W. Hohmann,et al.  A numerical evaluation of electromagnetic methods in geothermal exploration , 1996 .

[22]  Adele Manzella,et al.  Electromagnetic sounding of geothermal zones , 2009 .

[23]  I. Moeck,et al.  Exploring the Groß Schönebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models , 2010 .

[24]  Sabodh K. Garg,et al.  Characterization of geothermal reservoirs with electrical surveys: Beowawe geothermal field , 2007 .

[25]  Y. Daud,et al.  IMAGING RESERVOIR PERMEABILITY OF THE SIBAYAK GEOTHERMAL FIELD , INDONESIA USING GEOPHYSICAL MEASUREMENTS , 2001 .

[26]  H. Bibby,et al.  Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone , 2005 .

[27]  3D MT Characterization of Two Geothermal Fields in Iceland , 2011 .

[28]  D. Peacor,et al.  Clay Mineral Thermometry—A Critical Perspective , 1995 .

[29]  S. Thiel,et al.  Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system , 2012 .

[30]  S. Takakura,et al.  Geothermal Reservoirs Modeling in the Western Side of Mt. Aso, SW Japan by Magnetotelluric Method , 2005 .

[31]  Ruggero Bertani,et al.  Geothermal power generation in the world 2005–2010 update report , 2012 .

[32]  C. Kaya,et al.  Exploration of the Heat Source and Geothermal Possibilities of the Aksaray Region, Central Anatolia, Turkey , 2005 .

[33]  2-D and 3-D interpretation of magnetotelluric data in the Bajawa geothermal field, central Flores, Indonesia , 2002 .

[34]  T. Abiye,et al.  Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift , 2008 .

[35]  E. Anderson,et al.  BULLS-EYE! - SIMPLE RESISTIVITY IMAGING TO RELIABLY LOCATE THE GEOTHERMAL RESERVOIR , 2000 .

[36]  A. Manzella,et al.  DEEP FLUID CIRCULATION IN THE TRAVALE GEOTHERMAL AREA AND ITS RELATION WITH TECTONIC STRUCTURE INVESTIGATED BY A MAGNETOTELLURIC SURVEY , 2006 .

[37]  T. Harinarayana,et al.  Magnetotelluric evidence of potential geothermal resource in Puga, Ladakh, NW Himalaya , 2007 .

[38]  H. Bibby,et al.  Three‐dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand , 2008 .

[39]  A. Genter,et al.  DEEP TEMPERATURE EXTRAPOLATION IN THE SOULTZ-SOUS-FORÊTS GEOTHERMAL AREA USING MAGNETOTELLURIC DATA , 2010 .

[40]  T. Caldwell,et al.  Magnetotelluric imaging of upper‐crustal convection plumes beneath the Taupo Volcanic Zone, New Zealand , 2012 .

[41]  Y. Ogawa,et al.  Temporal changes in electrical resistivity at Sakurajima volcano from continuous magnetotelluric observations , 2011 .

[42]  P. Wannamaker,et al.  Resistivity Structures of Lahendong and Kamojang Geothermal Systems Revealed from 3-D Magnetotelluric Inversions, A Comparative Study , 2010 .

[43]  H. M. Bibby,et al.  Investigations of deep resistivity structures at the Wairakei geothermal field , 2009 .

[44]  Inga Moeck,et al.  A target‐oriented magnetotelluric inversion approach for characterizing the low enthalpy Groß Schönebeck geothermal reservoir , 2010 .

[45]  T. Lee,et al.  Three-dimensional magnetotelluric surveys for geothermal development in Pohang, Korea , 2007 .

[46]  Páll Einarsson,et al.  S-wave shadows in the Krafla Caldera in NE-Iceland, evidence for a magma chamber in the crust , 1978 .

[47]  R. A. D. Rosario,et al.  Controlled Source Magnetotelluric Survey of Mabini Geothermal Prospect, Mabini, Batangas, Philippines , 2009 .

[48]  Enrico Barbier,et al.  Geothermal energy technology and current status: an overview , 2002 .

[49]  H. Bibby Electrical resistivity mapping in the Central Volcanic Region of New Zealand , 1988 .

[50]  H. Bibby,et al.  Melt distribution beneath a young continental rift: The Taupo Volcanic Zone, New Zealand , 2007 .

[51]  S. L. Fontes,et al.  Magnetotelluric studies of the Caldas Novas geothermal reservoir, Brazil , 2002 .

[52]  A. Brogi,et al.  Extensional shear zones as imaged by reflection seismic lines: the Larderello geothermal field (central Italy) , 2003 .

[53]  Philip E. Wannamaker,et al.  Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part II: Implications for CSAMT methodology , 1997 .

[54]  E. Huenges,et al.  Directional Drilling and Stimulation of a Deep Sedimentary Geothermal Reservoir , 2007 .

[55]  Toshiyuki Tosha,et al.  Wide‐band magnetotelluric measurements across the Taupo Volcanic Zone, New Zealand‐Preliminary results , 1999 .

[56]  M. Casini,et al.  Results of a 3D seismic survey at the Travale (Italy) test site , 2010 .

[57]  P. Wannamaker Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part I: Implications for structure of the western caldera , 1997 .

[58]  R. Howie,et al.  Rock-forming minerals: Vol. 3 : sheet silicates , 1962 .

[59]  Peter Rose,et al.  Magnetotelluric Surveying and Monitoring at the Coso Geothermal Area, California, in Support of the Enhanced Geothermal Systems Concept: Survey Parameters, Initial Results , 2005 .

[60]  Y. Mitsuhata,et al.  Magnetotelluric Survey in an Extremely Noisy Environment at the Pohang Low-Enthalpy Geothermal Area, Korea , 2005 .

[61]  T. Harinarayana,et al.  Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies , 2006 .

[62]  K. Árnason,et al.  THE RESISTIVITY STRUCTURE OF HIGH-TEMPERATURE GEOTHERMAL SYSTEMS IN ICELAND , 2000 .

[63]  Gary R. Olhoeft,et al.  Electrical Resistivity of Geothermal Brines , 1980 .

[64]  H. Bibby,et al.  Long offset tensor apparent resistivity surveys of the Taupo Volcanic Zone, New Zealand , 2002 .

[65]  A. Mortensen,et al.  Quenched Silicic Glass from Well KJ-39 in Krafla, North-Eastern Iceland , 2010 .

[66]  J. Romo A closely-spaced magnetotelluric study of the Ahuachapn-Chipilapa geothermal field, El Salvador , 1997 .

[67]  Toshihiro Uchida,et al.  Three-Dimensional Magnetotelluric Investigation in Geothermal Fields in Japan and Indonesia , 2005 .

[68]  3D gravity inversion with Euler deconvolution as a priori information , 2007 .

[69]  A. Manzella,et al.  Possible seismic signature of the α β quartz transition in the lithosphere of Southern Tuscany (Italy) , 2005 .

[70]  Gylfi Páll Hersir,et al.  Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland , 2010 .

[71]  P. Bedrosian,et al.  Electromagnetic monitoring of the Groβ Schönebeck stimulation experiment , 2003 .

[72]  J. Ledo,et al.  3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain) , 2009 .

[73]  W. Soyer,et al.  Interpretation of 3D Magnetotelluric (MT) Surveys: Basement Conductors of the Menderes Massif, Western Turkey , 2012 .

[74]  A. Manzella,et al.  2 D inversion of the Magnetotelluric data from Travale Geothermal Field in Italy , 2011 .

[75]  G. Newman,et al.  Three-dimensional magnetotelluric characterization of the Coso geothermal field , 2008 .

[76]  L. Muffler,et al.  Methods for regional assessment of geothermal resources , 1977 .

[77]  F. Santos,et al.  An audiomagnetotelluric survey over the chaves geothermal field (NE Portugal) , 1996 .

[78]  S. Takakura,et al.  GEOELECTRICAL INVESTIGATION OF THE KAKKONDA GEOTHERMAL FIELD, NORTHERN JAPAN , 2000 .

[79]  E. Lagios,et al.  Two-dimensional magnetotelluric modelling of the Kos Island geothermal region (Greece) , 1998 .

[80]  Ladislaus Rybach,et al.  Status and Prospects of Geothermal Energy , 2010 .

[81]  Phillip M. Wright,et al.  State-of-the-art geophysical exploration for geothermal resources , 1985 .