Study of iterative methods through the Cayley Quadratic Test

Many iterative methods for solving nonlinear equations have been developed recently. The main advantage claimed by their authors is the improvement of the order of convergence. In this work, we compare their dynamical behavior on quadratic polynomials with the one of Newton's scheme. This comparison is defined in what we call Cayley Quadratic Test (CQT) which can be used as a first test to check the efficiency of such methods. Moreover we make a brief insight in cubic polynomials.

[1]  Alicia Cordero,et al.  Complex dynamics of derivative-free methods for nonlinear equations , 2013, Appl. Math. Comput..

[2]  Alicia Cordero,et al.  Chaos in King's iterative family , 2013, Appl. Math. Lett..

[3]  Yitian Li,et al.  A family of fourth-order methods for solving non-linear equations , 2007, Appl. Math. Comput..

[4]  P. Blanchard Complex analytic dynamics on the Riemann sphere , 1984 .

[5]  Alicia Cordero,et al.  On improved three-step schemes with high efficiency index and their dynamics , 2013, Numerical Algorithms.

[6]  Ángel Alberto Magreñán,et al.  Real dynamics for damped Newton's method applied to cubic polynomials , 2015, J. Comput. Appl. Math..

[7]  R. F. King A Family of Fourth Order Methods for Nonlinear Equations , 1973 .

[8]  Vejdi I. Hasanov,et al.  On some families of multi-point iterative methods for solving nonlinear equations , 2006, Numerical Algorithms.

[9]  G. Julia Mémoire sur l'itération des fonctions rationnelles , 1918 .

[10]  J. L. Varona,et al.  Graphic and numerical comparison between iterative methods , 2002 .

[11]  Alicia Cordero,et al.  Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods , 2013, Int. J. Comput. Math..

[12]  Changbum Chun,et al.  Corrigendum to "Basins of attraction for optimal eighth-order methods to find simple roots of nonlinear equations" , 2014, Appl. Math. Comput..

[13]  Daniel E. Geer,et al.  Convergence , 2021, IEEE Secur. Priv..

[14]  Cayley Desiderata and Suggestions: No. 3.The Newton-Fourier Imaginary Problem , 1879 .

[15]  Alicia Cordero,et al.  Dynamics of the family of c-iterative methods , 2015, Int. J. Comput. Math..

[16]  Young Ik Kim A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations , 2012, Int. J. Comput. Math..

[17]  S. Amat,et al.  Review of some iterative root-finding methods from a dynamical point of view , 2004 .

[18]  S. Amat,et al.  Reducing Chaos and Bifurcations in Newton-Type Methods , 2013 .

[19]  Eulalia Martínez,et al.  Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems , 2015, J. Comput. Appl. Math..

[20]  Alicia Cordero,et al.  Stability of King's family of iterative methods with memory , 2017, J. Comput. Appl. Math..

[21]  Alicia Cordero,et al.  Dynamics of a family of Chebyshev-Halley type methods , 2012, Appl. Math. Comput..

[22]  F. Soleymani,et al.  Modified Jarratt Method without Memory with Twelfth-Order Convergence , 2012 .

[23]  Jeremy E. Kozdon,et al.  Choosing weight functions in iterative methods for simple roots , 2014, Appl. Math. Comput..

[24]  Alan F. Beardon,et al.  Iteration of Rational Functions , 1991 .

[25]  Ernst Schröder,et al.  Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen , 1870 .

[26]  H. T. Kung,et al.  Optimal Order of One-Point and Multipoint Iteration , 1974, JACM.

[27]  Ángel Alberto Magreñán Ruiz,et al.  Estudio de la dinámica del método de Newton amortiguado , 2013 .

[28]  Alicia Cordero,et al.  Drawing Dynamical and Parameters Planes of Iterative Families and Methods , 2013, TheScientificWorldJournal.

[29]  Jean-Paul Bézivin,et al.  Sur les équations fonctionelles $p$-adiques aux $q$-différences , 1992 .

[30]  Ángel Alberto Magreñán,et al.  Different anomalies in a Jarratt family of iterative root-finding methods , 2014, Appl. Math. Comput..