The Hard Problems Are Almost Everywhere For Random CNF-XOR Formulas

Recent universal-hashing based approaches to sampling and counting crucially depend on the runtime performance of SAT solvers on formulas expressed as the conjunction of both CNF constraints and variable-width XOR constraints (known as CNF-XOR formulas). In this paper, we present the first study of the runtime behavior of SAT solvers equipped with XOR-reasoning techniques on random CNF-XOR formulas. We empirically demonstrate that a state-of-the-art SAT solver scales exponentially on random CNF-XOR formulas across a wide range of XOR-clause densities, peaking around the empirical phase-transition location. On the theoretical front, we prove that the solution space of a random CNF-XOR formula 'shatters' at all nonzero XOR-clause densities into well-separated components, similar to the behavior seen in random CNF formulas known to be difficult for many SAT algorithms.

[1]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[2]  Bart Selman,et al.  Model Counting: A New Strategy for Obtaining Good Bounds , 2006, AAAI.

[3]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[4]  Jörg Hoffmann,et al.  Short XORs for Model Counting: From Theory to Practice , 2007, SAT.

[5]  Krzysztof Czarnecki,et al.  Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-Learning SAT Solvers , 2015, Haifa Verification Conference.

[6]  Thierry Mora,et al.  Clustering of solutions in the random satisfiability problem , 2005, Physical review letters.

[7]  Sanjit A. Seshia,et al.  Distribution-Aware Sampling and Weighted Model Counting for SAT , 2014, AAAI.

[8]  Stefano Ermon,et al.  Closing the Gap Between Short and Long XORs for Model Counting , 2015, AAAI.

[9]  Thierry Mora,et al.  Pairs of SAT Assignment in Random Boolean Formulae , 2005, ArXiv.

[10]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[11]  Supratik Chakraborty,et al.  Algorithmic Improvements in Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT Calls , 2016, IJCAI.

[12]  Claude Castelluccia,et al.  Extending SAT Solvers to Cryptographic Problems , 2009, SAT.

[13]  Petteri Kaski,et al.  Hard Satisfiable Clause Sets for Benchmarking Equivalence Reasoning Techniques , 2006, J. Satisf. Boolean Model. Comput..

[14]  Amin Coja-Oghlan,et al.  On belief propagation guided decimation for random k-SAT , 2010, SODA '11.

[15]  Yashodhan Kanoria,et al.  The set of solutions of random XORSAT formulae , 2011, SODA.

[16]  K. Roberts,et al.  Thesis , 2002 .

[17]  M. Mézard,et al.  Threshold values of random K-SAT from the cavity method , 2006 .

[18]  Ricardo Menchaca-Mendez,et al.  Exponential Lower Bounds for DPLL Algorithms on Satisfiable Random 3-CNF Formulas , 2012, SAT.

[19]  Michael Molloy,et al.  The solution space geometry of random linear equations , 2011, Random Struct. Algorithms.

[20]  Sharad Malik,et al.  Constrained Sampling and Counting: Universal Hashing Meets SAT Solving , 2015, AAAI Workshop: Beyond NP.

[21]  Supratik Chakraborty,et al.  A Scalable and Nearly Uniform Generator of SAT Witnesses , 2013, CAV.

[22]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[23]  M. Nivat Theoretical Computer Science Volume 213-214 , 1999 .

[24]  Allan Sly,et al.  Proof of the Satisfiability Conjecture for Large k , 2014, STOC.

[25]  Moshe Y. Vardi,et al.  Combining the k-CNF and XOR Phase-Transitions , 2016, IJCAI.

[26]  Riccardo Zecchina,et al.  Threshold values of random K‐SAT from the cavity method , 2003, Random Struct. Algorithms.

[27]  Devika Subramanian,et al.  Random 3-SAT: The Plot Thickens , 2000, Constraints.

[28]  Amin Coja-Oghlan,et al.  On the solution‐space geometry of random constraint satisfaction problems , 2011, Random Struct. Algorithms.

[29]  Sharad Malik,et al.  On computing minimal independent support and its applications to sampling and counting , 2015, Constraints.

[30]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[31]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[32]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .