Uniqueness and Complete Dynamics in Heterogeneous Competition-Diffusion Systems

In this paper we study the interactions between diffusion and heterogeneity of the environment in the classical diffusive Lotka--Volterra competition systems. In the weak competition case, we establish the uniqueness, hence the global asymptotic stability, of coexistence steady states under various circumstances, and thereby we obtain a complete understanding of the change in dynamics when one of the interspecific competition coefficients is small.

[1]  W. Rudin Principles of mathematical analysis , 1964 .

[2]  Konstantin Mischaikow,et al.  The evolution of slow dispersal rates: a reaction diffusion model , 1998 .

[3]  Y. Lou,et al.  Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics , 2008 .

[4]  Konstantin Mischaikow,et al.  Convergence in competition models with small diffusion coefficients , 2005 .

[5]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[6]  Yuan Lou,et al.  On the dependence of populationsize upon random dispersal rate , 2012 .

[7]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[8]  Morris W. Hirsch,et al.  Asymptotically stable equilibria for monotone semiflows , 2005 .

[9]  Chris Cosner,et al.  Book Review: Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems , 1996 .

[10]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[11]  Yuan Lou,et al.  On the effects of migration and spatial heterogeneity on single and multiple species , 2006 .

[12]  P. Hess,et al.  Periodic-Parabolic Boundary Value Problems and Positivity , 1991 .

[13]  M. Kreĭn,et al.  Linear operators leaving invariant a cone in a Banach space , 1950 .

[14]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[15]  M. Hirsch,et al.  4. Monotone Dynamical Systems , 2005 .

[16]  R. Veit,et al.  Partial Differential Equations in Ecology: Spatial Interactions and Population Dynamics , 1994 .

[17]  M. Hirsch Stability and convergence in strongly monotone dynamical systems. , 1988 .

[18]  V. Hutson,et al.  Spatial heterogeneity of resources versus lotka-volterra dynamics , 2002 .

[19]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[20]  Yang Wang,et al.  On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model , 2011 .