Recent developments in grinding machines

Grinding is often the final step in the process/manufacturing chain, meaning that no subsequent post-grinding correction of the surface and geometry is performed. This imposes strong requirements on grinding-machine technology and on the understanding of this finalising process. While grinding has unique capabilities it is nevertheless in competition with other machining processes. The evolution of grinding machines is driven by process requirements like accuracy, MRR, and subsurface integrity. The regeneration of the tool on the machine with dressing devices is to be regarded as unique for grinding machines, hence a grinding machine always runs two separate processes. The high accuracy of grinding has, in fact, been an obstacle to simply adopting developments from other machining processes. Also, a lack of experienced machinists and a general trend towards individualized products and one-piece flow has required a transition from an experience-based approach to a science-based approach. Development is further driven by market demands, such as cost-reduction in terms of CAPEX, footprint, TCO versus quality, and throughput, which affect business models and the machine's design and construction. Moreover, the current mega-trends – such as resource efficiency, individualization, ergonomics and Industry 4.0 – are changing the appearance of grinding machines, which is also affected by the availability of new technologies, especially sensors, actuators and the control or machine intelligence. This paper reviews the most-relevant technologies, assesses their impact and the readiness of industry to adopt them, identifies the still-open issues, and concludes with future research requirements.

[1]  L. Uriarte,et al.  Continuous workpiece speed variation (CWSV): Model based practical application to avoid chatter in grinding , 2009 .

[2]  Paul Shore,et al.  Manufacture of large mirrors for ELTs: a fresh perspective , 2004, SPIE Optical Systems Design.

[3]  W. B. Rowe,et al.  Optimisation of fluid application in grinding , 2008 .

[4]  M. H. Fernandes,et al.  Dynamic model of a centerless grinding machine based on an updated FE model , 2008 .

[5]  Richard Greenough,et al.  Modelling condition-based maintenance to deliver a service to machine tool users , 2011 .

[6]  Berend Denkena,et al.  Abrasion Monitoring and Automatic Chatter Detection in Cylindrical Plunge Grinding , 2013 .

[7]  Fritz Klocke,et al.  A New Method for Chatter Detection in Grinding , 1999 .

[8]  Reimund Neugebauer,et al.  New High-Speed Machine Tool Structure by Holistic Mechatronic Systems Design , 2012 .

[9]  Wei-Chun Hsu,et al.  The effect of dynamic behavior on surface roughness of ball screw under the grinding force , 2011 .

[10]  Lin Yang,et al.  Finite Element Analysis for Critical Components of Ultra-Precision Grinding Machine Tool , 2013 .

[11]  Christian Brecher,et al.  Chatter suppression techniques in metal cutting , 2016 .

[12]  Konrad Wegener,et al.  Framework of a machine tool configurator for energy efficiency , 2015 .

[13]  C. Niżankowski Manufacturing sintered corundum abradants , 2002 .

[14]  David K. Aspinwall,et al.  A study on ultrasonic assisted creep feed grinding of nickel based superalloys , 2012 .

[15]  Lihong Yuan,et al.  Stability Analysis of Roll Grinding System with Double Time Delay Effects , 2005 .

[16]  Fredy Kuster,et al.  High performance grinding of zirconium oxide (ZrO2) using hybrid bond diamond tools , 2013 .

[17]  Yang Li,et al.  A review on spindle thermal error compensation in machine tools , 2015 .

[18]  D. Barrenetxea,et al.  MODEL-BASED ASSISTANT TOOL FOR THE SETTING-UP AND OPTIMIZATION OF CENTERLESS GRINDING PROCESS , 2012 .

[19]  Yoshiharu Namba,et al.  Process mechanism in shape adaptive grinding (SAG) , 2015 .

[20]  Jay Lee,et al.  Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment , 2014 .

[21]  Xu Min,et al.  An improved thermal model for machine tool bearings , 2007 .

[22]  Wim Dewulf,et al.  Combining Machine Tool Builder and Operator Perspective towards Energy and Resource Efficiency in Manufacturing , 2013 .

[23]  Gilberto Herrera-Ruiz,et al.  Chattering detection in cylindrical grinding processes using the wavelet transform , 2006 .

[24]  Christian Brecher,et al.  Virtual machine tool , 2005 .

[25]  Jeongmin Byun,et al.  Methods for Improving Chucking Accuracy , 2012 .

[26]  Bo-Sung Kim,et al.  A STUDY ON THE THERMAL CHARACTERISTICS OF THE GRINDING MACHINE APPLIED HYDROSTATIC BEARING , 2015 .

[27]  Barbara Linke,et al.  Life Cycle Analysis of Grinding , 2012 .

[28]  S Birla,et al.  Reconfigurable Machine Controllers using the OMAC API , 2001 .

[29]  A. Senthil Kumar,et al.  A multiprocess machine tool for compound micromachining , 2010 .

[30]  Claus P. Keferstein,et al.  Process monitoring in non-circular grinding with optical sensor , 2008 .

[31]  Jun Ni,et al.  A comparative study on damage detection in speed-up and coast-down process of grinding spindle-typed rotor-bearing system , 2007 .

[32]  Ekkard Brinksmeier,et al.  High-Speed Grinding-Fundamentals and State of the Art in Europe, Japan, and the USA , 1997 .

[33]  Yu. A. Morgunov,et al.  Producing cylindrical gears by high-speed grinding , 2016 .

[34]  Mingjun Zhang,et al.  A study on diamond grinding wheels with regular grain distribution using additive manufacturing (AM) technology , 2016 .

[35]  Ekkard Brinksmeier,et al.  New Tool Concepts for Ultra-Precision Grinding , 2012 .

[36]  K. Wegener,et al.  Conditioning and monitoring of grinding wheels , 2011 .

[37]  W. Brian Rowe,et al.  Rounding and stability in centreless grinding , 2014 .

[38]  Peter Krajnik,et al.  Geometric, kinematical and thermal analyses of non-round cylindrical grinding , 2014 .

[39]  R Kang,et al.  Volumetric Error Modelling, Measurement, and Compensation for an Integrated Measurement-Processing Machine Tool , 2010 .

[40]  Fritz Klocke,et al.  Automatic chatter detection in grinding , 2003 .

[41]  Chun Liang Zhang,et al.  H∞/μ Robust Control of Vibration for an Ultra-Precision Grinding Machine , 2003 .

[42]  Annika Raatz,et al.  An active tool holding device , 2012, Prod. Eng..

[43]  Sungho Jeong,et al.  Effect of joint conditions on the dynamic behavior of a grinding wheel spindle , 2001 .

[44]  Konrad Wegener,et al.  Continuous generating grinding: Machine tool optimisation by coupled manufacturing simulation , 2016 .

[45]  Zhaoheng Liu,et al.  Stability analysis of doubly regenerative cylindrical grinding process , 2007 .

[46]  Konrad Wegener,et al.  Machine tool optimization strategies for ecologic and economic efficiency , 2013 .

[47]  C. C. Cheng,et al.  Moving follower rest design using vibration absorbers for ball screw grinding , 2009 .

[48]  Andre D. L. Batako,et al.  Workpiece roundness profile in the frequency domain: an application in cylindrical plunge grinding , 2014 .

[49]  Peter Krajnik,et al.  Stability analysis and optimization algorithms for the set-up of infeed centerless grinding , 2014 .

[50]  Mohamed Konneh,et al.  Surface finish prediction models for precision grinding of silicon , 2012 .

[51]  Berend Denkena,et al.  Design and Optimisation of an Electromagnetic Linear Guide for Ultra-Precision High Performance Cutting , 2016 .

[52]  Tanveer Saleh,et al.  Development and performance evaluation of an ultra precision ELID grinding machine , 2007 .

[53]  Peihua Gu,et al.  Geometric accuracy allocation for multi-axis CNC machine tools based on sensitivity analysis and reliability theory , 2015 .

[54]  J Corbett Smart machine tools , 1998 .

[55]  Shinji Shimizu,et al.  Mechanism of Improvement Effect of Ultrasonically Activated Coolant on Finished Surface Roughness in Cylindrical Grinding , 2006 .

[56]  Peter Krajnik,et al.  Optimization of peripheral non-round cylindrical grinding via an adaptable constant-temperature process , 2013 .

[57]  Christian Brecher,et al.  Thermal issues in machine tools , 2012 .

[58]  Chih-Hsing Chu,et al.  CFRP grinding wheels for high speed and ultra-high speed grinding: A review of current technologies and research strategies , 2015 .

[59]  Ekkard Brinksmeier,et al.  Ultra-precision grinding , 2010 .

[60]  Yinbiao Guo,et al.  Research on the error analysis and compensation for the precision grinding of large aspheric mirror surface , 2014 .

[61]  Yoke San Wong,et al.  11.01 – Introduction to Advanced Machining Technologies , 2014 .

[62]  Daniel D. Frey,et al.  Swept Envelopes of Cutting Tools in Integrated Machine and Workpiece Error Budgeting , 1997 .

[63]  Sanjay Agarwal,et al.  Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding , 2013 .

[64]  Li Yan,et al.  Applications of artificial intelligence in grinding , 1994 .

[65]  Keiichi Shirase,et al.  Simulation Technologies for the Development of an Autonomous and Intelligent Machine Tool , 2013, Int. J. Autom. Technol..

[66]  Jianguo Yang,et al.  Research on Thermal Error Compensation Technology of Grinding Machine Based on Neural Networks , 2007 .

[67]  Peter Krajnik,et al.  High-performance grinding—A review , 2006 .

[68]  Yi Jian,et al.  Research on Geometric Error Compensating Technique of CNC P3G Grinding Machine , 2012 .

[69]  Garret E. O’Donnell,et al.  The effect of wheel eccentricity and run-out on grinding forces, waviness, wheel wear and chatter , 2011 .

[70]  Mohammad R. Movahhedy,et al.  Ultrasonic-Assisted Grinding of Ti6Al4V Alloy , 2012 .

[71]  Peter Krajnik,et al.  Simulation of workpiece forming and centre displacement in plunge centreless grinding , 2008 .

[72]  Mathias Schmitt,et al.  Human-machine-interaction in the industry 4.0 era , 2014, 2014 12th IEEE International Conference on Industrial Informatics (INDIN).

[73]  Hugh M. Cartwright,et al.  Applications of artificial intelligence in chemistry , 1993 .

[74]  Steven Y. Liang,et al.  Ductile grinding of Silicon carbide in high speed grinding , 2016 .

[75]  Shuyun Jiang,et al.  Dynamic Design of a High-Speed Motorized Spindle-Bearing System , 2010 .

[76]  Hans-Christian Möhring,et al.  Active error compensation in contour-controlled grinding , 2011 .

[77]  I. Gallego,et al.  Intelligent grinding: sensorless instabilities detection , 2006, IEEE Instrumentation & Measurement Magazine.

[78]  Jan C. Aurich,et al.  Improved coolant supply through slotted grinding wheel , 2013 .

[79]  Elena Marzorati,et al.  In-Process Quality Characterization of Grinding Processes: A Sensor-Fusion Based Approach , 2014 .

[80]  João Fernando Gomes de Oliveira,et al.  Experimental analysis of wheel/workpiece dynamic interactions in grinding , 2008 .

[81]  Shihmin Lo,et al.  A preliminary study on manufacturing servitization in machine tool industry , 2014, Proceedings of PICMET '14 Conference: Portland International Center for Management of Engineering and Technology; Infrastructure and Service Integration.

[82]  A. Erman Tekkaya,et al.  Hybrid processes in manufacturing , 2014 .

[83]  Gideon Levy,et al.  Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes , 2014 .

[84]  Ernst Michael Leitz,et al.  Satisloh centering technology developments past to present , 2015, SPIE Optifab.

[85]  Fritz Klocke,et al.  Dressing of fine grained diamond grinding wheels for ultra precision grinding of structured molds in brittle hard materials , 2013, Other Conferences.

[86]  Cornel Mihai Nicolescu,et al.  Development and analysis of a consciously designed Joint Interface Module for improvement of a machining system’s dynamic performance , 2017 .

[87]  Jeehyun Jung,et al.  Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface , 2015, Simul. Model. Pract. Theory.

[88]  Oliver Faehnle,et al.  Exploiting the Process Stability of Fluid Jet Polishing , 2008 .

[89]  S. To,et al.  Surface damage mechanism of WC/Co and RB-SiC/Si composites under high spindle speed grinding (HSSG) , 2016 .

[90]  Xiao Long Shen,et al.  Experimental Investigation and Improvement of Dynamic Performance of High-Speed Grinding Machine , 2010 .

[91]  Josef Mayr,et al.  High precision grey-box model for compensation of thermal errors on five-axis machines , 2014 .

[92]  Jianzhong Fu,et al.  Product-of-exponential formulas for precision enhancement of five-axis machine tools via geometric error modeling and compensation , 2015 .

[93]  Xiaolong Fang,et al.  Experimental Investigation on Electrochemical Grinding of Inconel 718 , 2015 .

[94]  D. Barrenetxea,et al.  Semi-discretization for stability analysis of in-feed cylindrical grinding with continuous workpiece speed variation , 2013 .

[95]  V A Korotkov,et al.  Forecasting of operational indicators of grinding tools with the controlled form and orientation of abrasive grains , 2015 .

[96]  Luca Landi,et al.  Analytical Model, Multibody Simulation and Validation Tests for Dynamical Instability Reduction of a Grinding Machine With Dampers , 2011 .

[97]  Xun Chen,et al.  Grinding Burn and Chatter Classification Using Genetic Programming , 2008 .

[98]  Baotong Li,et al.  On-machine self-calibration method for compensation during precision fabrication of 900-mm-diameter zerodur aspheric mirror , 2015 .

[99]  Amitava Ghosh,et al.  Some critical issues in cryo-grinding by a vitrified bonded alumina wheel using liquid nitrogen jet , 2016 .

[100]  Jay Lee Teleservice engineering in manufacturing: challenges and opportunities , 1998 .

[101]  Alexander Verl,et al.  Sensorless automated condition monitoring for the control of the predictive maintenance of machine tools , 2009 .

[102]  Xindu Chen,et al.  A study of single kinematic errors accurate fitting for ultra-precision micro v-groove machine tools , 2015 .

[103]  Hans Kurt Tönshoff,et al.  Process Monitoring in Grinding , 2002 .

[104]  Samir Mekid,et al.  Beyond intelligent manufacturing: A new generation of flexible intelligent NC machines , 2009 .

[105]  Bahman Azarhoushang,et al.  Wear of non-segmented and segmented diamond wheels in high-speed deep grinding of carbon fibre-reinforced ceramics , 2014 .

[106]  Shen Dong,et al.  Research on the Influence of the Diamond Wheel Wears on Machining Accuracy during Large Depth-to-Diameter Ratio Ultra-Precision Aspheric Grinding Process , 2003 .

[107]  Stephen Malkin,et al.  Analytical and experimental investigation of burnout in creep-feed grinding , 1994 .

[108]  Ekkard Brinksmeier,et al.  Microfluidic Balancing Concepts for Ultraprecision High Speed Applications , 2016 .

[109]  Fritz Klocke,et al.  Cryogenic manufacturing processes , 2016 .

[110]  Bahman Azarhoushang,et al.  High Efficiency, High Speed Grinding of a Composite Material Consisting of Polymer Concrete and Steel Structures , 2016 .

[111]  N. Taniguchi Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing , 1983 .

[112]  Fukuo Hashimoto,et al.  Industrial challenges in grinding , 2009 .

[113]  Jan C. Aurich,et al.  High-performance dry grinding using a grinding wheel with a defined grain pattern , 2008 .

[114]  Michael P. Hitchiner Current Status of Peel Grinding Technology , 2010 .

[115]  Pedro J. Arrazola,et al.  Precision, Stability and Productivity Increase in Throughfeed Centerless Grinding , 2006 .

[116]  Han Ding,et al.  Accurate nonlinear modeling and computing of grinding machine settings modification considering spatial geometric errors for hypoid gears , 2016 .

[117]  Jisheng Pan,et al.  Experimental study of surface performance of monocrystalline 6H-SiC substrates in plane grinding with a metal-bonded diamond wheel , 2017 .

[118]  H. E. Hintermann,et al.  On Improved Bonding of Tic-Coated CBN Grits in Nickel-Based Matrix , 1993 .

[119]  Ekkard Brinksmeier,et al.  Advances in Modeling and Simulation of Grinding Processes , 2006 .

[120]  Xincheng Tian,et al.  Dimensional error prediction and its intelligent soft pre-compensation in batch manufacture , 2015 .

[121]  Stephen T. Newman,et al.  Making CNC machine tools more open, interoperable and intelligent - a review of the technologies , 2006, Comput. Ind..

[122]  Hai Bin Huang,et al.  Study on Precision Grinding Technique for Large Size Optical Aspheric Lens , 2013 .

[123]  Garret E. O’Donnell,et al.  FPGA based Monitoring Platform for Condition Monitoring in Cylindrical Grinding , 2014 .

[124]  Konrad Wegener,et al.  Energy Consumption Measurement with a Multichannel Measurement System on a machine tool , 2010 .

[125]  Ekkard Brinksmeier,et al.  Capability Profile of Hard Cutting and Grinding Processes , 2005 .

[126]  Jan C. Aurich,et al.  Integrated Desktop Machine Tool for Manufacturing and Application of Ultra-small Micro Pencil Grinding Tools , 2014 .

[127]  Jay Lee,et al.  A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems , 2015 .

[128]  Christian Brecher,et al.  Materials in machine tool structures , 2015 .

[129]  Yinbiao Guo,et al.  Analysis of surface errors and subsurface damage in flexible grinding of optical fused silica , 2017 .

[130]  Seok-Woo Lee,et al.  Reliability Prediction of Centerless Grinding Machine , 2005 .

[131]  Mitsuyoshi Nomura,et al.  Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel 718 , 2016 .

[132]  Yu Can Fu,et al.  Research on Dynamic Behavior of Different Grinding Wheel Hub Material with FEM Method , 2016 .

[133]  Li Bao An,et al.  Progress of Traditional Ultra-Precision Machining Processes , 2013 .

[134]  Reinaldo Rodríguez-Ramos,et al.  Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles , 2007 .

[135]  Chinedum E. Okwudire,et al.  Reduction of vibrations of passively-isolated ultra-precision manufacturing machines using mode coupling , 2016 .

[136]  Angsumalin Senjuntichai,et al.  In-Process Chatter Detection in Surface Grinding , 2015 .

[137]  Georg Vorlaufer,et al.  Online monitoring of a belt grinding process by using a light scattering method. , 2010, Applied optics.

[138]  E. Brinksmeier,et al.  Friction, Cooling and Lubrication in Grinding , 1999 .

[139]  Xuesong Mei,et al.  Geometric error modeling and compensation for large-scale grinding machine tools with multi-axes , 2013 .

[140]  Michael J. Vellekoop,et al.  Investigation of chatter marks on ground surfaces by means of optical methods , 2011 .

[141]  Eugene I. Rivin Vibration Isolation of Precision Objects , 2006 .

[142]  David K. Aspinwall,et al.  Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points , 2009 .

[143]  Peter Krajnik,et al.  Modelling of grinding gap macro geometry and workpiece kinematics in throughfeed centreless grinding , 2010 .

[144]  Abdul Wahid Khan,et al.  Systematic Geometric Error Modeling for Workspace Volumetric Calibration of a 5-axis Turbine Blade Grinding Machine , 2010 .

[145]  C. Harris,et al.  Harris' Shock and Vibration Handbook , 1976 .

[146]  Knut Großmann,et al.  Fast High-Resolution FE-based Simulation of Thermo-Elastic Behaviour of Machine Tool Structures☆ , 2016 .

[147]  Konrad Wegener,et al.  The Total Energy Efficiency Index for machine tools , 2016 .

[148]  Abdallah A. Elsharkawy,et al.  Effect of grinding forces on the vibration of grinding machine spindle system , 2000 .

[149]  Wim Dewulf,et al.  Critical comparison of methods to determine the energy input for discrete manufacturing processes , 2012 .

[150]  Yucan Fu,et al.  Structural design of a carbon fiber-reinforced polymer wheel for ultra-high speed grinding , 2015 .

[151]  Xun Chen,et al.  Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming , 2009 .

[152]  Holger Reinecke,et al.  An Experimental Study on the Dynamic Behavior of Grinding Wheels in High Efficiency Deep Grinding , 2012 .

[153]  R.A. Qureshi,et al.  Modification of Torsional Characteristics of Workpiece Drive System in Cylindrical Grinding , 2003 .

[154]  Christoph Herrmann,et al.  An Investigation into Fixed Energy Consumption of Machine Tools , 2011 .

[155]  D. Barrenetxea,et al.  Simulation of an active vibration control system in a centerless grinding machine using a reduced updated FE model , 2009 .

[156]  K. Wegener,et al.  In-process wire electrical discharge dressing (IWEDD) of metal bonded diamond wheels , 2013 .

[157]  W. Brian Rowe Grinding Machine Developments , 2014 .

[158]  Rui Cai,et al.  Design and implementation of an intelligent grinding assistant system , 2007 .

[159]  Giacomo Bianchi,et al.  Model-based adaptive process control for surface finish improvement in traverse grinding , 2016 .

[160]  Yinbiao Guo,et al.  A Machining Error Compensation Method Using on-Machine Profile Measurement in 3-Axis Aspheric Grinding , 2010 .

[161]  Manfred Weck,et al.  Chatter Stability of Metal Cutting and Grinding , 2004 .

[162]  Christian Brecher,et al.  Interaction of manufacturing process and machine tool , 2009 .

[163]  Paul Morantz,et al.  Ultra-precision: enabling our future , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[164]  Rui Cai,et al.  Intelligent grinding assistant (IGA(©)) - system development part I intelligent grinding database , 2007 .

[165]  D. Barrenetxea,et al.  A new perspective on the stability study of centerless grinding process , 2010 .

[166]  Akira Hosokawa,et al.  Drastic reduction of grinding fluid flow in cylindrical plunge grinding by means of contact-type flexible brush-nozzle , 2016 .

[167]  Ekkard Brinksmeier,et al.  Control of a Thermal Actuator for UP-milling with Multiple Cutting Edges☆ , 2016 .

[168]  Christian Brecher,et al.  Machine tool spindle units , 2010 .

[169]  Berend Denkena,et al.  Enhanced grinding performance by means of patterned grinding wheels , 2015 .

[170]  Annika Raatz,et al.  Design process for adaptronic machine tools , 2009, Prod. Eng..

[171]  Friedrich Kuster,et al.  Special wire guide for on-machine wire electrical discharge dressing of metal bonded grinding wheels , 2010 .

[172]  Fei Xue,et al.  Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine , 2017 .

[173]  Berend Denkena,et al.  Virtual process systems for part machining operations , 2014 .

[174]  Taghi Tawakoli,et al.  Temperature and energy partition in minimum quantity lubrication-MQL grinding process , 2012 .

[175]  Markus Ess,et al.  Simulation and compensation of thermal errors of machine tools , 2012 .

[176]  Jeehyun Jung,et al.  Stability and bifurcation analyses of chatter vibrations in a nonlinear cylindrical traverse grinding process , 2013 .

[177]  D. Barrenetxea,et al.  Research advances and steps towards the control of geometric deviations in the surface grinding of big components , 2013 .

[178]  Baotong Li,et al.  Profile error compensation in cross-grinding mode for large-diameter aspheric mirrors , 2016 .

[179]  Jay Lee,et al.  Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation , 2015 .

[180]  Ekkard Brinksmeier,et al.  Force Controlled Grinding of Ceramic Materials , 2015 .

[181]  Zhifeng Liu,et al.  Stiffness design of machine tool structures by a biologically inspired topology optimization method , 2014 .

[182]  Zhiwei Wang,et al.  Research on error averaging effect of hydrostatic guideways , 2012 .

[183]  Youngjae Chun,et al.  A Study on the Optimum Condition Selection of Rotary Dressing System of Ultra-Precision Centerless Grinding Machine for Ferrule , 2005 .

[184]  Christian Brecher,et al.  Interferometrische Messung von Freiform-Schneidkanten auf einer Diamantwerkzeugbearbeitungsmaschine , 2011 .

[185]  Kripa K. Varanasi,et al.  Damping of flexural vibration by coupling to low-density granular materials , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[186]  Krzysztof Nadolny,et al.  State of the art in production, properties and applications of the microcrystalline sintered corundum abrasive grains , 2014 .

[187]  H. Hintermann,et al.  On Performance of Brazed Single-Layer CBN Wheel , 1994 .

[188]  Hao Lin Li,et al.  The Thermal Structure Coupling Analysis of Hydrostatic Motorized Spindle in Ultra-Precision Grinding Machine , 2014 .

[189]  Jay Lee,et al.  Recent advances and trends in predictive manufacturing systems in big data environment , 2013 .

[190]  Michael Gull Ultraschallunterstützte Innenrundbearbeitung von sprödharten Werkstoffen durch Seitenquer- und Umfangsquerschleifen , 2015 .

[191]  I. Inasaki,et al.  Grinding Chatter – Origin and Suppression , 2001 .

[192]  Paul Morantz,et al.  Grinding metre scale mirror segments for the E-ELT ground based telescope , 2011 .

[193]  Dun Wen Zuo,et al.  Grinding characteristics in high-speed grinding of boron-diffusion-hardened TC21-DT titanium alloy with vitrified CBN wheel , 2017 .

[194]  Wei Gao,et al.  On-machine form measurement of high precision ceramics parts by using a laser displacement sensor , 2014 .

[195]  Xincheng Tian,et al.  Dimensional error analysis and its intelligent pre-compensation in cnc grinding , 2008 .

[196]  Zhi Li Sun,et al.  Study on Thermal Properties of Hybrid Journal Bearing for Super High Speed Grinding Machine , 2010 .

[197]  Jerzy Jedrzejewski,et al.  Development of Machine Tool Operational Properties , 2015 .

[198]  Haw Ching Yang,et al.  Development of a cloud-computing-based equipment monitoring system for machine tool industry , 2012, 2012 IEEE International Conference on Automation Science and Engineering (CASE).

[199]  Q. Fang,et al.  Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding , 2015 .

[200]  Jan C. Aurich,et al.  Comparison of the Embodied Energy of a Grinding Wheel and an End Mill , 2014 .

[201]  Jae-Seob Kwak,et al.  Neural network approach for diagnosis of grinding operation by acoustic emission and power signals , 2004 .

[202]  Shinya Tsukamoto,et al.  Numerical Analysis for Thermal Deformation of Workpiece in Cylindrical Plunge Grinding , 2008 .

[203]  D. Barrenetxea,et al.  Strategies for optimal use of fluids in grinding , 2011 .

[204]  Eduard Reithmeier,et al.  Development of a measurement system for the online inspection of microstructured surfaces in harsh industrial conditions , 2014, Photonics Europe.

[205]  S. Jack Hu,et al.  Active precision design for complex machine tools: methodology and case study , 2015 .

[206]  Berend Denkena,et al.  Mechatronic Systems for Machine Tools , 2007 .

[207]  Stephan Scholze,et al.  Electrical Discharge Conditioning for Indexable Insert Grinding , 2016 .

[208]  Osamu Horiuchi,et al.  Suppression of wheel-regenerative grinding vibration by alternating wheel speed. , 1986 .

[209]  Yong Chen,et al.  Development and Research on the Dynamics Simulation System for Surface Grinding Process with Diamond Wheel , 2013 .

[210]  Giacomo Bianchi,et al.  Force-field instability in surface grinding , 2014 .

[211]  Josef Mayr,et al.  Automated thermal main spindle & B-axis error compensation of 5-axis machine tools , 2016 .

[212]  Fukuo Hashimoto,et al.  Cycle optimization in cam-lobe grinding for high productivity , 2014 .

[213]  R. Ryan Vallance,et al.  In-process force measurement for diameter control in precision cylindrical grinding , 2009 .

[214]  R. Bueno,et al.  Practical Application of New Simulation Methods for the Elimination of Geometric Instabilities in Centerless Grinding , 2005 .

[215]  Josef Mayr,et al.  Design of a Measurement Setup and First Experiments on the Influence of CO2-cooling on the Thermal Displacements on a Machine Tool , 2016 .

[216]  Fukuo Hashimoto,et al.  Advances in centerless grinding technology , 2012 .

[217]  Konrad Wegener,et al.  PRÄZOPLAN: die aerostatisch flächig geführte Hochpräzisionsfräsmaschine , 2010 .

[218]  Peihua Gu,et al.  A geometric accuracy design method of multi-axis NC machine tool for improving machining accuracy reliability , 2015 .

[219]  Masayoshi Nakamura,et al.  Evaluation of surface and subsurface cracks on nano-scale machined brittle materials by scanning force microscope and scanning laser microscope , 2003 .

[220]  Christian Brecher,et al.  Machine tool feed drives , 2011 .

[221]  Hamid Zahrouni,et al.  An ABAQUS toolbox for multiscale finite element computation , 2013 .

[222]  Yung C. Shin,et al.  Control of Cutting Force for Creep-Feed Grinding Processes Using a Multi-Level Fuzzy Controller , 2007 .

[223]  Shaohui Yin,et al.  Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement , 2010 .

[224]  Weimin Ma,et al.  Method for graphically evaluating the workpiece’s contour error in non-circular grinding process , 2010 .

[225]  Christian Brecher,et al.  New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding , 2010 .

[226]  Alberto Borboni,et al.  Machine Tools Thermostabilization Using Passive Control Strategies , 2012 .

[227]  Christian Brecher,et al.  Avoiding chatter by means of active damping systems for machine tools , 2013 .

[228]  Yung C. Shin,et al.  Automated Sensor Selection and Fusion for Monitoring and Diagnostics of Plunge Grinding , 2008 .

[229]  C. Heinzel,et al.  Advanced approach for a demand-oriented fluid supply in grinding , 2015 .

[230]  Herbert Reichl,et al.  Ultra precision milling of mechanical components and functionality systems for optical and electrooptical modules , 2004 .

[231]  Jia-Yush Yen,et al.  Solid modeling based servo system design for a high speed micro grinding machine , 2006 .

[232]  Berend Denkena,et al.  Monitoring of grinding wheel defects using recursive estimation , 2014 .

[233]  Hongqi Li,et al.  A study on chatter boundaries of cylindrical plunge grinding with process condition-dependent dynamics , 2007 .

[234]  Christoph Herrmann,et al.  Eco-efficiency of manufacturing processes: A grinding case , 2012 .

[235]  Takashi Sato,et al.  Development of a new rotary ultrasonic spindle for precision ultrasonically assisted grinding , 2009 .

[236]  M. Rabiey,et al.  Dry grinding by special conditioning , 2007 .