Design and implementation of qth quantile‐unbiased tr‐chart for monitoring times between events

[1]  Thong Ngee Goh,et al.  Cumulative quantity control charts for monitoring production processes , 2000 .

[2]  William H. Woodall,et al.  The Difficulty in Designing Shewhart X̄ and X Control Charts with Estimated Parameters , 2015 .

[3]  Michael B. C. Khoo,et al.  Optimal design of synthetic np control chart based on median run length , 2017 .

[4]  Philippe Castagliola,et al.  A median run length-based double-sampling X¯$$ \overline{X} $$ chart with estimated parameters for minimizing the average sample size , 2015 .

[5]  Philippe Castagliola,et al.  Optimal design of the adaptive EWMA chart for the mean based on median run length and expected median run length , 2019 .

[6]  Subha Chakraborti Parameter estimation and design considerations in prospective applications of the X¯ chart , 2006 .

[7]  Connie M. Borror,et al.  Poisson EWMA Control Charts , 1998 .

[8]  Stefan H Steiner,et al.  Assessing the effect of estimation error on risk-adjusted CUSUM chart performance. , 2012, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[9]  Joel Smith,et al.  Control Charts Based on the Exponential Distribution: Adapting Runs Rules for the t Chart , 2013 .

[10]  Philippe Castagliola,et al.  Optimal design of the synthetic chart for the process mean based on median run length , 2012 .

[11]  B. J. Conlin,et al.  A comparison of the performance of statistical quality control charts in a dairy production system through stochastic simulation , 2005 .

[12]  K. Govindaraju,et al.  On the Statistical Design of Geometric Control Charts , 2004 .

[13]  Vasyl Golosnoy,et al.  EWMA Control Charts for Monitoring Optimal Portfolio Weights , 2007 .

[14]  Lloyd S. Nelson,et al.  A Control Chart for Parts-Per-Million Nonconforming Items , 1994 .

[15]  Christian H. Weiß,et al.  Properties of the exponential EWMA chart with parameter estimation , 2010, Qual. Reliab. Eng. Int..

[16]  M. Xie,et al.  Monitoring time-between-events for health management , 2010, 2010 Prognostics and System Health Management Conference.

[17]  N. Kumar,et al.  Improved Shewhart-Type Charts for Monitoring Times Between Events , 2017 .

[18]  William H. Woodall,et al.  CUSUM charts with controlled conditional performance under estimated parameters , 2016 .

[19]  Subhabrata Chakraborti,et al.  Run Length Distribution and Percentiles: The Shewhart Chart with Unknown Parameters , 2007 .

[20]  Thong Ngee Goh,et al.  Control Limits Based on the Narrowest Confidence Interval , 2011 .

[21]  Fah Fatt Gan,et al.  Designs of One- and Two-Sided Exponential EWMA Charts , 1998 .

[22]  Charles W. Champ,et al.  Phase I control charts for times between events , 2002 .

[23]  Thong Ngee Goh,et al.  Design of exponential control charts using a sequential sampling scheme , 2006 .

[24]  Abdur Rahim,et al.  A CCC‐r chart for high‐yield processes , 2001 .

[25]  Shuo Huang,et al.  Design of Gamma control charts based on the narrowest confidence interval , 2016, 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).

[26]  Thong Ngee Goh,et al.  Some effective control chart procedures for reliability monitoring , 2002, Reliab. Eng. Syst. Saf..

[27]  Fah Fatt Gan,et al.  An optimal design of ewma control charts based on median run length , 1993 .

[28]  Andrew C. Palm,et al.  Tables of Run Length Percentiles for Determining the Sensitivity of Shewhart Control Charts for Averages with Supplementary Runs Rules , 1990 .

[29]  Philippe Castagliola,et al.  Optimal design of the double sampling X chart with estimated parameters based on median run length , 2014, Comput. Ind. Eng..

[30]  Subhabrata Chakraborti,et al.  Phase II Shewhart‐type Control Charts for Monitoring Times Between Events and Effects of Parameter Estimation , 2016, Qual. Reliab. Eng. Int..