Frequency-Tunable Microwave Field Detection in an Atomic Vapor Cell

We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high resolution microwave imaging system, this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.

[1]  Selahattin Sayil,et al.  Comparison of contactless measurement and testing techniques to a all-silicon optical test and characterization method , 2005, IEEE Transactions on Instrumentation and Measurement.

[2]  M. Romalis,et al.  Atomic magnetometers for materials characterization , 2011 .

[3]  E. Proietti,et al.  Optimization of the imaging response of scanning microwave microscopy measurements , 2015 .

[4]  Andrew Horsley,et al.  Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution , 2015, 1510.00223.

[5]  Laurent Chusseau,et al.  Near-Field Electromagnetic Characterization and Perturbation of Logic Circuits , 2008, IEEE Transactions on Instrumentation and Measurement.

[6]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[7]  Gaetano Mileti,et al.  Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock , 2015, IEEE Transactions on Instrumentation and Measurement.

[8]  I Savukov,et al.  Anatomical MRI with an atomic magnetometer. , 2013, Journal of magnetic resonance.

[9]  J. Kitching,et al.  Nuclear quadrupole resonances in compact vapor cells : The crossover between the NMR and the nuclear quadrupole resonance interaction regimes , 2008, 0810.3928.

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  Christopher L. Holloway,et al.  Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms , 2014, 1404.0289.

[12]  J. Kitching,et al.  A low-power, high-sensitivity micromachined optical magnetometer , 2012 .

[13]  I Savukov,et al.  Magnetic-resonance imaging of the human brain with an atomic magnetometer. , 2013, Applied physics letters.

[14]  S Kumar,et al.  Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. , 2014, Optics letters.

[15]  M. Romalis,et al.  Subfemtotesla scalar atomic magnetometry using multipass cells. , 2012, Physical review letters.

[16]  Michael P. Weisend,et al.  Multi-sensor magnetoencephalography with atomic magnetometers , 2013, Physics in medicine and biology.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  M. Pellaton,et al.  Study of laser-pumped double-resonance clock signals using a microfabricated cell , 2012 .

[19]  R. Wakai,et al.  A compact, high performance atomic magnetometer for biomedical applications , 2013, Physics in medicine and biology.

[20]  R. Lathe Phd by thesis , 1988, Nature.

[21]  Zach DeVito,et al.  Opt , 2017 .

[22]  Jiangfeng Du,et al.  High-resolution vector microwave magnetometry based on solid-state spins in diamond , 2015, Nature Communications.

[23]  V. Yashchuk,et al.  Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer , 2008 .

[24]  S. Knappe,et al.  Optical isolator using an atomic vapor in the hyperfine Paschen-Back regime. , 2012, Optics letters.

[25]  G. Bison,et al.  A room temperature 19-channel magnetic field mapping device for cardiac signals , 2009, 0906.4869.

[26]  Ram M. Narayanan,et al.  On the Opportunities and Challenges in Microwave Medical Sensing and Imaging , 2015, IEEE Transactions on Biomedical Engineering.

[27]  Philipp Treutlein,et al.  Imaging of microwave fields using ultracold atoms , 2010, 1009.4651.

[28]  S. Knappe,et al.  The hyperfine Paschen–Back Faraday effect , 2014, 1401.1659.

[29]  N. Nikolova Microwave Imaging for Breast Cancer , 2011, IEEE Microwave Magazine.

[30]  L. Trahms,et al.  Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers , 2015, Physics in medicine and biology.

[31]  Mark A. Zentile,et al.  ElecSus: A program to calculate the electric susceptibility of an atomic ensemble , 2014, Comput. Phys. Commun..

[32]  Gaetano Mileti,et al.  Imaging of Relaxation Times and Microwave Field Strength in a Microfabricated Vapor Cell , 2013, 1306.1387.

[33]  M. Ganzhorn,et al.  Nanoscale microwave imaging with a single electron spin in diamond , 2015, 1508.02719.

[34]  M. Romalis,et al.  Tunable atomic magnetometer for detection of radio-frequency magnetic fields. , 2005, Physical review letters.

[35]  James P. Shaffer,et al.  Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances , 2012, Nature Physics.

[36]  Dmitry Budker,et al.  Eddy current imaging with an atomic radio-frequency magnetometer , 2016, 1603.05067.

[37]  Shaya Karimkashi,et al.  Atom based RF electric field sensing , 2015 .

[38]  Paul M. Meaney,et al.  Enhancing breast tumor detection with near-field imaging , 2002 .

[39]  Robert Wyllie,et al.  Optical magnetometer array for fetal magnetocardiography. , 2012, Optics letters.

[40]  Philipp Treutlein,et al.  Simple microwave field imaging technique using hot atomic vapor cells , 2012, 1207.4964.

[41]  Orang Alem,et al.  Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance , 2006 .

[42]  Cameron Deans,et al.  Electromagnetic induction imaging with a radio-frequency atomic magnetometer , 2016, 1603.03412.