Parameterizing Edge Modification Problems Above Lower Bounds
暂无分享,去创建一个
[1] Christian Komusiewicz,et al. Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..
[2] Saket Saurabh,et al. Faster Parameterized Algorithms Using Linear Programming , 2012, ACM Trans. Algorithms.
[3] Stefan Kratsch,et al. Two edge modification problems without polynomial kernels , 2009, Discret. Optim..
[4] Christian Komusiewicz,et al. Graph-based data clustering with overlaps , 2009, Discret. Optim..
[5] Uriel Feige. Faster FAST(Feedback Arc Set in Tournaments) , 2009, ArXiv.
[6] Jayme Luiz Szwarcfiter,et al. Applying Modular Decomposition to Parameterized Cluster Editing Problems , 2008, Theory of Computing Systems.
[7] Michal Pilipczuk,et al. Exploring the Subexponential Complexity of Completion Problems , 2015, TOCT.
[8] Naveen Sivadasan,et al. Parameterized lower bound and improved kernel for Diamond-free Edge Deletion , 2015, IPEC.
[9] Christophe Paul,et al. On the (Non-)Existence of Polynomial Kernels for Pl-Free Edge Modification Problems , 2010, Algorithmica.
[10] Rolf Niedermeier,et al. Automated Generation of Search Tree Algorithms for Hard Graph Modification Problems , 2004, Algorithmica.
[11] Meena Mahajan,et al. Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..
[12] Noga Alon,et al. Ranking Tournaments , 2006, SIAM J. Discret. Math..
[13] Sebastian Böcker,et al. Going weighted: Parameterized algorithms for cluster editing , 2008, Theor. Comput. Sci..
[14] Rolf Niedermeier,et al. Fixed-parameter tractability results for feedback set problems in tournaments , 2006, J. Discrete Algorithms.
[15] Christophe Paul,et al. Conflict Packing Yields Linear Vertex-Kernels for k -FAST, k -dense RTI and a Related Problem , 2011, MFCS.
[16] Naveen Sivadasan,et al. Parameterized Lower Bounds and Dichotomy Results for the NP-completeness of H-free Edge Modification Problems , 2015, LATIN.
[17] Saket Saurabh,et al. Parameterized algorithms for feedback set problems and their duals in tournaments , 2006, Theor. Comput. Sci..
[18] Michal Pilipczuk,et al. On Multiway Cut Parameterized above Lower Bounds , 2011, IPEC.
[19] Christian Komusiewicz,et al. On Generating Triangle-Free Graphs , 2009, Electron. Notes Discret. Math..
[20] Magnus Wahlström,et al. Algorithms, measures and upper bounds for satisfiability and related problems , 2007 .
[21] Barry O'Sullivan,et al. Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..
[22] Noga Alon,et al. Fast Fast , 2009, ICALP.
[23] Christian Komusiewicz,et al. Isolation concepts for efficiently enumerating dense subgraphs , 2009, Theor. Comput. Sci..
[24] Roded Sharan,et al. Cluster graph modification problems , 2002, Discret. Appl. Math..
[25] Jiong Guo,et al. A More Effective Linear Kernelization for Cluster Editing , 2007, ESCAPE.
[26] Fedor V. Fomin,et al. Exact exponential algorithms , 2013, CACM.
[27] Dimitrios M. Thilikos,et al. Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..
[28] Rolf Niedermeier,et al. Exact combinatorial algorithms and experiments for finding maximum k-plexes , 2012, J. Comb. Optim..
[29] John M. Lewis,et al. The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..
[30] René van Bevern. Towards Optimal and Expressive Kernelization for d-Hitting Set , 2011, Algorithmica.
[31] Mirko Krivánek,et al. NP-hard problems in hierarchical-tree clustering , 1986, Acta Informatica.
[32] Stefan Kratsch,et al. Recent developments in kernelization: A survey , 2014, Bull. EATCS.
[33] Jianer Chen,et al. A 2k kernel for the cluster editing problem , 2012, J. Comput. Syst. Sci..
[34] Michal Pilipczuk,et al. Subexponential Parameterized Algorithm for Computing the Cutwidth of a Semi-complete Digraph , 2013, ESA.
[35] Leizhen Cai,et al. Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..
[36] Mihalis Yannakakis,et al. Edge-Deletion Problems , 1981, SIAM J. Comput..
[37] Fedor V. Fomin,et al. Kernels for feedback arc set in tournaments , 2009, J. Comput. Syst. Sci..
[38] Leizhen Cai,et al. Incompressibility of $$H$$H-Free Edge Modification Problems , 2014, Algorithmica.
[39] Michal Pilipczuk,et al. Subexponential fixed-parameter tractability of cluster editing , 2011, ArXiv.
[40] Stefan Kratsch,et al. Polynomial Kernelizations for MIN F+Π1 and MAX NP , 2009, Algorithmica.
[41] Yunlong Liu,et al. Complexity and parameterized algorithms for Cograph Editing , 2012, Theor. Comput. Sci..
[42] Michal Pilipczuk,et al. Parameterized Algorithms , 2015, Springer International Publishing.
[43] Christophe Paul,et al. Linear kernel for Rooted Triplet Inconsistency and other problems based on conflict packing technique , 2016, J. Comput. Syst. Sci..
[44] Marek Karpinski,et al. Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament , 2010, ISAAC.
[45] Christian Komusiewicz,et al. Parameterizing Edge Modification Problems Above Lower Bounds , 2016, CSR.
[46] Fabrizio Grandoni,et al. Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.
[47] Holger H. Hoos,et al. Programming by Optimisation Meets Parameterised Algorithmics: A Case Study for Cluster Editing , 2015, LION.
[48] Geevarghese Philip,et al. Raising The Bar For Vertex Cover: Fixed-parameter Tractability Above A Higher Guarantee , 2015, SODA.
[49] Michael R. Fellows,et al. Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT , 2003, WG.
[50] Sebastian Böcker,et al. A golden ratio parameterized algorithm for Cluster Editing , 2011, J. Discrete Algorithms.
[51] Michael R. Fellows,et al. Fundamentals of Parameterized Complexity , 2013 .