An algebraic approach to nonlinear functional expansions

A new theory of functional expansion is presented which makes use of formal power series in several noncommutative variables and of iterated integrals. A simple closed-form expression for the solution of a nonlinear differential equation with forcing terms is derived, which enables us to give the corresponding Volterra kernels with utmost precision. The noncommutative variables give birth to a symbolic calculus which generalizes in a nonlinear setting many features of the Laplace and Fourier transforms and which is developed in order to simplify some computations, like the so-called association of variables, related to high-order transfer functions.

[1]  Michel Fliess,et al.  An Algebraic Approach to Functional Expansions, Application to a Singular Optimal Control Problem , 1981 .

[2]  R. Hermann On the Accessibility Problem in Control Theory , 1963 .

[3]  I. Sandberg Volterra expansions for time-varying nonlinear systems , 1982, The Bell System Technical Journal.

[4]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[5]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[6]  L. Chua,et al.  Frequency-domain analysis of nonlinear systems: formulation of transfer functions , 1979 .

[7]  I. Sandberg On Volterra expansions for time-varying nonlinear systems , 1983 .

[8]  I. W. Sandberg,et al.  Expansions for nonlinear systems , 1982, The Bell System Technical Journal.

[9]  R. B. Parente Nonlinear Differential Equations and Analytic System Theory , 1970 .

[10]  Roger W. Brockett Volterra series and geometric control theory , 1976, Autom..

[11]  L. Chua,et al.  Frequency domain analysis of nonlinear systems: general theory , 1979 .

[12]  E. Gilbert Functional expansions for the response of nonlinear differential systems , 1977 .

[13]  Leon O. Chua,et al.  Hopf bifurcation via Volterra series , 1983 .

[14]  A. Krener,et al.  The existence and uniqueness of volterra series for nonlinear systems , 1977 .

[15]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[16]  R. Ree,et al.  Lie Elements and an Algebra Associated With Shuffles , 1958 .

[17]  Dorothee Normand-Cyrot,et al.  An Algebraic Approach to the Input/Output Description of Nonlinear Discrete-Time Systems , 1982, 1982 American Control Conference.

[18]  Françoise Lamnabhi-Lagarrigue,et al.  Algebraic Computation of the Solution of Some NonLinear Differential Equations , 1982, EUROCAM.

[19]  Michel Fliess,et al.  Application of a new functional expansion to the cubic anharmonic oscillator , 1982 .

[20]  P. Crouch Dynamical Realizations of Finite Volterra Series , 1981 .

[21]  J. Barrett The Use of Functionals in the Analysis of Non-linear Physical Systems† , 1963 .

[22]  V. Bansal,et al.  Multidimensional Laplace transforms for solution of nonlinear equations , 1969 .

[23]  P. Levy,et al.  Problèmes concrets d'analyse fonctionnelle , 1952 .

[24]  M Lamnabhi A new symbolic calculus for the response of nonlinear systems , 1982 .

[25]  I. Sandberg Series expansions for nonlinear systems , 1983 .

[26]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[27]  F. Fallside,et al.  Analysis of Non-linear Differential Equations by the Volterra Series† , 1966 .

[28]  Wolfgang Gröbner,et al.  Contributions to the method of Lie series , 1967 .

[29]  M. Fliess A remark on the transfer functions and the realization of homogeneous continuous-time nonlinear systems , 1979 .

[30]  Leon O. Chua,et al.  Nonlinear oscillation via Volterra series , 1982 .

[31]  D. A. George Continuous nonlinear systems , 1959 .

[32]  E. Bedrosian,et al.  The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs , 1971 .

[33]  A. Halme,et al.  Generalized polynomial operators for nonlinear systems analysis , 1972 .

[34]  Michel Fliess,et al.  Un Outil Algebrique: Les Series Formelles Non Commutatives , 1976 .

[35]  M. Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives , 1983 .

[36]  W. Rugh,et al.  On a multidimensional S -transform and the realization problem for homogeneous nonlinear systems , 1977 .

[37]  F. R. Gantmakher The Theory of Matrices , 1984 .

[38]  J. J. Bussgang,et al.  Analysis of nonlinear systems with multiple inputs , 1974 .

[39]  Rui J. P. de Figueiredo,et al.  A best approximation framework and implementation for simulation of large-scale nonlinear systems , 1980 .

[40]  C. Lobry Contr^olabilite des systemes non lineaires , 1970 .