An algorithm for counting short cycles in bipartite graphs

Let G=(U/spl cup/W, E) be a bipartite graph with disjoint vertex sets U and W, edge set E, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g+2, and g+4 incident upon every vertex in U/spl cup/W. The proposed cycle counting algorithm consists of integer matrix operations and its complexity grows as O(gn/sup 3/) where n=max(|U|,|W|).

[1]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[2]  Sergio Benedetto,et al.  Design of parallel concatenated convolutional codes , 1996, IEEE Trans. Commun..

[3]  A. Thomason Hamiltonian Cycles and Uniquely Edge Colourable Graphs , 1978 .

[4]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[5]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[6]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[7]  Keith M. Chugg,et al.  Enumerating and Counting Cycles in Bipartite Graphs , 2006 .

[8]  Robert J. McEliece,et al.  General coding theorems for turbo-like codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[9]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[10]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[11]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[12]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[13]  J. Demmel,et al.  Sun Microsystems , 1996 .

[14]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[15]  Achilleas Anastasopoulos,et al.  Iterative Detection: Adaptivity, Complexity Reduction, and Applications , 2000 .

[16]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[17]  Hans-Andrea Loeliger,et al.  Codes and iterative decoding on general graphs , 1995, Eur. Trans. Telecommun..

[18]  David J. C. MacKay,et al.  Encyclopedia of Sparse Graph Codes , 1999 .

[19]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[20]  Amir H. Banihashemi,et al.  A heuristic search for good low-density parity-check codes at short block lengths , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[21]  José M. F. Moura,et al.  The design of structured regular LDPC codes with large girth , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).