Statistical methods for analyzing gene expression data for cancer research.

[1]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[2]  Michael I. Jordan,et al.  Feature selection for high-dimensional genomic microarray data , 2001, ICML.

[3]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[4]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[5]  Nir Friedman,et al.  Class discovery in gene expression data , 2001, RECOMB.

[6]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Dudoit,et al.  Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. , 2000, Genome research.

[8]  Nello Cristianini,et al.  Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..

[9]  Roded Sharan,et al.  Center CLICK: A Clustering Algorithm with Applications to Gene Expression Analysis , 2000, ISMB.

[10]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[11]  N. Sampas,et al.  Molecular classification of cutaneous malignant melanoma by gene expression profiling , 2000, Nature.

[12]  Jill P. Mesirov,et al.  Class prediction and discovery using gene expression data , 2000, RECOMB '00.

[13]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[14]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[15]  Nir Friedman,et al.  Tissue classification with gene expression profiles. , 2000 .

[16]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[17]  Roger E Bumgarner,et al.  Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. , 1999, Gene.

[18]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[20]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Zohar Yakhini,et al.  Clustering gene expression patterns , 1999, J. Comput. Biol..

[22]  L. Hood,et al.  Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. , 1999, Gene.

[23]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. P. Fodor,et al.  High density synthetic oligonucleotide arrays , 1999, Nature Genetics.

[25]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[27]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[28]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[29]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[30]  P. Brown,et al.  A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. , 1996, Genome research.

[31]  B. Ripley Pattern Recognition and Neural Networks , 1996 .

[32]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[33]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[34]  R. Durrett Probability: Theory and Examples , 1993 .

[35]  Rose,et al.  Statistical mechanics and phase transitions in clustering. , 1990, Physical review letters.

[36]  M. Degroot,et al.  Probability and Statistics , 1977 .

[37]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.