Intermittent Theta-Burst Stimulation of the Lateral Cerebellum Increases Functional Connectivity of the Default Network

Cerebral cortical intrinsic connectivity networks share topographically arranged functional connectivity with the cerebellum. However, the contribution of cerebellar nodes to distributed network organization and function remains poorly understood. In humans, we applied theta-burst transcranial magnetic stimulation, guided by subject-specific connectivity, to regions of the cerebellum to evaluate the functional relevance of connections between cerebellar and cerebral cortical nodes in different networks. We demonstrate that changing activity in the human lateral cerebellar Crus I/II modulates the cerebral default mode network, whereas vermal lobule VII stimulation influences the cerebral dorsal attention system. These results provide novel insights into the distributed, but anatomically specific, modulatory impact of cerebellar effects on large-scale neural network function.

[1]  D. Pandya,et al.  The cerebrocerebellar system. , 1997, International review of neurobiology.

[2]  A. Brodal,et al.  Neurological Anatomy in Relation to Clinical Medicine , 1950 .

[3]  Gregor Thut,et al.  Modulation of steady-state auditory evoked potentials by cerebellar rTMS , 2006, Experimental Brain Research.

[4]  P. Strick,et al.  Cerebellum and nonmotor function. , 2009, Annual review of neuroscience.

[5]  R. Buckner,et al.  Transcranial magnetic stimulation modulates the brain's intrinsic activity in a frequency-dependent manner , 2011, Proceedings of the National Academy of Sciences.

[6]  Emanuele Lo Gerfo,et al.  Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum , 2008, Clinical Neurophysiology.

[7]  R. Snider Recent contributions to the anatomy and physiology of the cerebellum. , 1950, Archives of neurology and psychiatry.

[8]  Fenna M. Krienen,et al.  Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity , 2009, Cerebral cortex.

[9]  Antonio P. Strafella,et al.  Metabolic Changes of Cerebrum by Repetitive Transcranial Magnetic Stimulation over Lateral Cerebellum: A Study with FDG PET , 2011, The Cerebellum.

[10]  Á. Pascual-Leone,et al.  Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia , 2010, Schizophrenia Research.

[11]  Alvaro Pascual-Leone,et al.  Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans , 2001, Neuroscience Letters.

[12]  André Aleman,et al.  Auditory Hallucinations in Schizophrenia Are Associated with Reduced Functional Connectivity of the Temporo-Parietal Area , 2010, Biological Psychiatry.

[13]  Alvaro Pascual-Leone,et al.  Combining transcranial magnetic stimulation and FMRI to examine the default mode network. , 2010, Journal of visualized experiments : JoVE.

[14]  Yasushi Miyashita,et al.  Bidirectional effects on interhemispheric resting‐state functional connectivity induced by excitatory and inhibitory repetitive transcranial magnetic stimulation , 2014, Human brain mapping.

[15]  J. Rothwell,et al.  Theta Burst Stimulation of the Human Motor Cortex , 2005, Neuron.

[16]  E. Eldred,et al.  Electro‐anatomical studies on cerebro‐cerebellar connections in the cat , 1951, The Journal of comparative neurology.

[17]  Á. Pascual-Leone,et al.  Modulatory Effects of Theta Burst Stimulation on Cerebellar Nonsomatic Functions , 2011, The Cerebellum.

[18]  Y. D. van der Werf,et al.  Modulating spontaneous brain activity using repetitive transcranial magnetic stimulation , 2010, BMC Neuroscience.

[19]  F A Miles,et al.  Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. , 1998, Journal of neurophysiology.

[20]  Michael D. Greicius,et al.  Distinct Cerebellar Contributions to Intrinsic Connectivity Networks , 2009, NeuroImage.

[21]  W. Graf,et al.  Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. , 2010, Cerebral cortex.

[22]  P. Stoeter,et al.  Anatomical correlates of ocular motor deficits in cerebellar lesions. , 2009, Brain : a journal of neurology.

[23]  William W. McDonald,et al.  Efficacy and Safety of Transcranial Magnetic Stimulation in the Acute Treatment of Major Depression: A Multisite Randomized Controlled Trial , 2007, Biological Psychiatry.

[24]  Alan C. Evans,et al.  MRI Atlas of the Human Cerebellum , 2000 .

[25]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[27]  A. Fuchs,et al.  The role of the cerebellum in voluntary eye movements. , 2001, Annual review of neuroscience.

[28]  J. Schmahmann An emerging concept. The cerebellar contribution to higher function. , 1991, Archives of neurology.

[29]  Chengjie Xiong,et al.  Impaired default network functional connectivity in autosomal dominant Alzheimer disease , 2013, Neurology.

[30]  Christopher L. Asplund,et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[31]  Visuomotor Cerebellum in Human and Nonhuman Primates , 2010, The Cerebellum.

[32]  G. Glover,et al.  Causal interactions between fronto-parietal central executive and default-mode networks in humans , 2013, Proceedings of the National Academy of Sciences.

[33]  Keith A. Johnson,et al.  Amyloid Deposition Is Associated with Impaired Default Network Function in Older Persons without Dementia , 2009, Neuron.

[34]  S. H. A. Chen,et al.  Cerebellar transcranial magnetic stimulation impairs verbal working memory , 2005, Annals of neurology.

[35]  David H. Salat,et al.  Distinct functional networks within the cerebellum and their relation to cortical systems assessed with independent component analysis , 2012, NeuroImage.

[36]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[37]  J. Schmahmann,et al.  Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. , 2004, The Journal of neuropsychiatry and clinical neurosciences.

[38]  K Ohtsuka,et al.  Transcranial magnetic stimulation over the posterior cerebellum during visually guided saccades in man. , 1995, Brain : a journal of neurology.

[39]  Mark D'Esposito,et al.  The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI , 2013, Front. Syst. Neurosci..

[40]  M. Raichle,et al.  Resting State Functional Connectivity in Preclinical Alzheimer’s Disease , 2013, Biological Psychiatry.

[41]  A comparison of the tactile areas in the cerebellum of the cat and monkey (Macaca mulatta). , 1946, The Anatomical record.

[42]  Jeremy D. Schmahmann,et al.  An fMRI Study of Intra-Individual Functional Topography in the Human Cerebellum , 2010, Behavioural neurology.

[43]  U. Ziemann,et al.  Non-invasive Cerebellar Stimulation—a Consensus Paper , 2022 .

[44]  Juha Silvanto,et al.  Cerebellar vermis plays a causal role in visual motion discrimination , 2014, Cortex.

[45]  E. Courchesne,et al.  Attentional Activation of the Cerebellum Independent of Motor Involvement , 1997, Science.

[46]  Jie Lu,et al.  Focal Pontine Lesions Provide Evidence That Intrinsic Functional Connectivity Reflects Polysynaptic Anatomical Pathways , 2011, The Journal of Neuroscience.

[47]  Á. Pascual-Leone,et al.  Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression , 1996, The Lancet.

[48]  H. Johansen-Berg,et al.  Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. , 2010, Cerebral cortex.

[49]  L. Garriga-Grimau,et al.  [Cerebellar cognitive affective syndrome]. , 2015, Archivos argentinos de pediatria.

[50]  M. Raichle,et al.  Disease and the brain's dark energy , 2010, Nature Reviews Neurology.