Addresses: 1Laboratoire de Génétique et

[1]  Caenorhabditis Elegans Martinchalfieandjohnsulston Developmental Genetics of the Mechanosensory Neurons of Caenorhabditis elegans , 2003 .

[2]  C. Janeway,et al.  Innate immune recognition. , 2002, Annual review of immunology.

[3]  K. Anderson,et al.  The antibacterial arm of the drosophila innate immune response requires an IkappaB kinase. , 2001, Genes & development.

[4]  P. Kuwabara,et al.  A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans , 2000, Current Biology.

[5]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[6]  R. Zhou,et al.  Role of Drosophila IKKγ in a Toll-independent antibacterial immune response , 2000, Nature Immunology.

[7]  S. Wasserman,et al.  Toll signaling: the enigma variations. , 2000, Current opinion in genetics & development.

[8]  J. Hoffmann,et al.  Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  N. Pujol,et al.  The homeodomain protein CePHOX2/CEH-17 controls antero-posterior axonal growth in C. elegans. , 2000, Development.

[10]  J. Trowsdale,et al.  How low can toll go? , 2000, Trends in genetics : TIG.

[11]  T. Boller,et al.  FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. , 2000, Molecular cell.

[12]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[13]  S. R. Wicks,et al.  CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. , 2000, Developmental biology.

[14]  J. Hoffmann,et al.  The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. , 2000, Immunity.

[15]  A. Godzik,et al.  The Drosophila Tumor Necrosis Factor Receptor-associated Factor-1 (DTRAF1) Interacts with Pelle and Regulates NFκB Activity* , 2000, The Journal of Biological Chemistry.

[16]  C. Kurz,et al.  Caenorhabditis elegans for the study of host-pathogen interactions. , 2000, Trends in microbiology.

[17]  R. Fluhr,et al.  Divergent Evolution of Plant NBS-LRR Resistance Gene Homologues in Dicot and Cereal Genomes , 2000, Journal of Molecular Evolution.

[18]  S. Dower,et al.  Identification of Two Major Sites in the Type I Interleukin-1 Receptor Cytoplasmic Region Responsible for Coupling to Pro-inflammatory Signaling Pathways* , 2000, The Journal of Biological Chemistry.

[19]  J. Hoffmann,et al.  Signaling mechanisms in the antimicrobial host defense of Drosophila. , 2000, Current opinion in microbiology.

[20]  R. Medzhitov,et al.  Innate immune recognition: mechanisms and pathways , 2000, Immunological reviews.

[21]  K. Anderson,et al.  Toll signaling pathways in the innate immune response. , 2000, Current opinion in immunology.

[22]  F. Ausubel,et al.  Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. , 2000, Current opinion in microbiology.

[23]  S. Chauvet,et al.  Caenorhabditis elegans : un modèle d'étude des interactions hôtes-organisme pathogène. , 2000 .

[24]  J. Hoffmann,et al.  Toll and Toll-like proteins: an ancient family of receptors signaling infection. , 2000, Reviews in immunogenetics.

[25]  B. Sobral,et al.  Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide‐binding superfamily , 1999 .

[26]  P. McDermott,et al.  Induction of Cytokine Synthesis by Flagella from Gram-Negative Bacteria May Be Dependent on the Activation or Differentiation State of Human Monocytes , 1999, Infection and Immunity.

[27]  B Reardon,et al.  High-throughput isolation of Caenorhabditis elegans deletion mutants. , 1999, Genome research.

[28]  K. Davies,et al.  Predatory behaviour of trapping fungi against srf mutants of Caenorhabditis elegans and different plant and animal parasitic nematodes , 1999, Parasitology.

[29]  F C Kafatos,et al.  Phylogenetic perspectives in innate immunity. , 1999, Science.

[30]  Y. Ip,et al.  Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor , 1999 .

[31]  R. Medzhitov,et al.  The Toll-receptor family and control of innate immunity. , 1999, Current opinion in immunology.

[32]  E. Skolnik,et al.  A Drosophila TNF-receptor-associated factor (TRAF) binds the Ste20 kinase Misshapen and activates Jun kinase , 1999, Current Biology.

[33]  F. Ausubel,et al.  Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  I. Mori Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. , 1999, Annual review of genetics.

[35]  P. Scheurich,et al.  Identification of a TRAF (TNF Receptor-Associated Factor) Gene in Caenorhabditis elegans , 1998, Journal of Molecular Evolution.

[36]  T. Nyström,et al.  Attacin--an insect immune protein--binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. , 1998, Microbiology.

[37]  C. Janeway,et al.  Presidential Address to The American Association of Immunologists. The road less traveled by: the role of innate immunity in the adaptive immune response. , 1998, Journal of immunology.

[38]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[39]  B. Lemaître,et al.  Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Meister,et al.  Antimicrobial peptide defense in Drosophila , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  Antony Rodriguez,et al.  The 18‐wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense , 1997, The EMBO journal.

[42]  A. Engström,et al.  Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. , 1997, European journal of biochemistry.

[43]  Cori Bargmann,et al.  Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. , 1997, Learning & memory.

[44]  E. A. van der Biezen,et al.  The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. , 1997, The Plant cell.

[45]  Peer Bork,et al.  SAM as a protein interaction domain involved in developmental regulation , 1997, Protein science : a publication of the Protein Society.

[46]  B. Lemaître,et al.  The Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults , 1996, Cell.

[47]  N. Gay,et al.  Structural and functional diversity in the leucine-rich repeat family of proteins. , 1996, Progress in biophysics and molecular biology.

[48]  Cori Bargmann,et al.  Olfactory recognition and discrimination in Caenorhabditis elegans. , 1996, Cold Spring Harbor symposia on quantitative biology.

[49]  K. Anderson,et al.  A conserved signaling pathway: the Drosophila toll-dorsal pathway. , 1996, Annual review of cell and developmental biology.

[50]  M. Meister,et al.  A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Blumenthal Trans-splicing and polycistronic transcription in Caenorhabditis elegans. , 1995, Trends in genetics : TIG.

[52]  Andrew Fire,et al.  Chapter 19 DNA Transformation , 1995 .

[53]  Henry F. Epstein,et al.  Caenorhabditis elegans : modern biological analysis of an organism , 1995 .

[54]  R. Durbin,et al.  ACeDB and macace. , 1995, Methods in cell biology.

[55]  K. Anderson,et al.  Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. , 1995, Annual review of genetics.

[56]  H. Jansson Adhesion of Conidia of Drechmeria coniospora to Caenorhabditis elegans Wild Type and Mutants. , 1994, Journal of nematology.

[57]  X. Huang,et al.  On global sequence alignment , 1994, Comput. Appl. Biosci..

[58]  D. Hultmark Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. , 1994, Biochemical and biophysical research communications.

[59]  M. Levine,et al.  Dif, a dorsal-related gene that mediates an immune response in Drosophila , 1993, Cell.

[60]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[61]  D. Hultmark,et al.  kappa B-like motifs regulate the induction of immune genes in Drosophila. , 1993, Journal of molecular biology.

[62]  S. Wasserman,et al.  pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo , 1993, Cell.

[63]  C. Nüsslein-Volhard,et al.  cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IκB gene family of vertebrates , 1992, Cell.

[64]  P. Grewal,et al.  Migration of Caenorhabditis elegans (Nematoda : Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus , 1992 .

[65]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[66]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[67]  D. Hall,et al.  Genetics of cell and axon migrations in Caenorhabditis elegans. , 1987, Development.

[68]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[69]  H. Jansson,et al.  Differential Adhesion and Infection of Nematodes by the Endoparasitic Fungus Meria coniospora (Deuteromycetes) , 1985, Applied and environmental microbiology.

[70]  K. Xanthopoulos,et al.  Insect Pathogenic Properties Of Serratia Marcescens. Passive And Active Resistance To Insect Immunity Studied With Protease-Deficient And Phage-Resistant Mutants , 1983 .

[71]  J. Sulston,et al.  Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. , 1981, Developmental biology.

[72]  K. Kenne,et al.  Insect pathogenic properties of Serratia marcescens: phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. , 1980, Journal of general microbiology.

[73]  W. Nicholas,et al.  Effect of Bacteria On Dispersal of Caenorhabditis Elegans (Rhabditidae) , 1976 .

[74]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[75]  B. Rasmuson,et al.  Inducible Antibacterial Defence System in Drosophila , 1972, Nature.

[76]  B. Sohlenius Influence of Microorganisms and Temperature upon some Rhabditid Nematodes , 1968, Pedobiologia.

[77]  C. Drechsler Some hyphomycetes parasitic on free-living terricokms nematodes. , 1941 .

[78]  M. B. Linford STIMULATED ACTIVITY OF NATURAL ENEMIES OF NEMATODES. , 1937, Science.

[79]  H. Spencer The structure of the nervous system. , 1870 .