Mean Exit Times and the Multilevel Monte Carlo Method

Numerical methods for stochastic differential equations are relatively inefficient when used to ap- proximate mean exit times. In particular, although the basic Euler-Maruyama method has weak order equal to one for approximating the expected value of the solution, the order reduces to one half when it is used in a straightforward manner to approximate the mean value of a (stopped) exit time. Consequently, the widely used standard approach of combining an Euler-Maruyama discretization with a Monte Carlo simulation leads to a computationally expensive procedure. In this work, we show that the multilevel approach developed by Giles (Oper. Res., 56 (2008), pp. 607-617) can be adapted to the mean exit time context. In order to justify the algorithm, we analyze the strong error of the discretization method in terms of its ability to approximate the exit time. We then show that the resulting multilevel algorithm improves the expected computational complexity by an order of magnitude, in terms of the required accuracy. Numerical results are provided to illustrate the analysis.

[1]  Alexander J. Triantis,et al.  Valuing Flexibility as a Complex Option , 1990 .

[2]  L. Szpruch,et al.  Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model , 2011 .

[3]  A. M. Hussain,et al.  Multisensor distributed sequential detection , 1994 .

[4]  Henry G. Overman,et al.  A time to build , 2013 .

[5]  Le Yi Wang,et al.  Optimal Remapping in Dynamic Bulk Synchronous Computations via a Stochastic Control Approach , 2003, IEEE Trans. Parallel Distributed Syst..

[6]  Frank Riedel,et al.  On Irreversible Investment , 2006 .

[7]  Michael I. Taksar,et al.  Optimal risk and dividend distribution control models for an insurance company , 2000, Math. Methods Oper. Res..

[8]  T. Müller-Gronbach The optimal uniform approximation of systems of stochastic differential equations , 2002 .

[9]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[10]  Jakša Cvitanić,et al.  Hedging Contingent Claims with Constrained Portfolios , 1993 .

[11]  Michael B. Giles,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[12]  D. J. Bedingham,et al.  State reduction dynamics in a simplified QED model , 2008, 0808.4098.

[13]  Heinrich Meyr,et al.  A Simple Method for Evaluating the Probability Density Function of the Sample Number for the Optimum Sequential Detector , 1987, IEEE Trans. Commun..

[14]  E. Gobet,et al.  Stopped diffusion processes: Boundary corrections and overshoot , 2007, 0706.4042.

[15]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[16]  Desmond J. Higham,et al.  Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff , 2009, Finance Stochastics.

[17]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[18]  M. Brelot Classical potential theory and its probabilistic counterpart , 1986 .

[19]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[20]  Marga Peeters,et al.  Time-To-Build , 1995 .

[21]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[22]  Leif Andersen A Simple Approach to the Pricing of Bermudan Swaptions in the Multi-Factor Libor Market Model , 1999 .

[23]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[24]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[25]  E. Gobet,et al.  Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme , 2004 .

[26]  Jan M. Maciejowski,et al.  Simulation‐based Bayesian optimal design of aircraft trajectories for air traffic management , 2010 .

[27]  Emmanuel Gobet,et al.  Discrete Sampling of Functionals of Ito Processes , 2007 .

[28]  Riccardo Mannella,et al.  Absorbing boundaries and optimal stopping in a stochastic differential equation , 1999 .

[29]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[30]  A. Gallant,et al.  ESTIMATION OF CONTINUOUS-TIME MODELS FOR STOCK RETURNS AND INTEREST RATES , 1997, Macroeconomic Dynamics.

[31]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[32]  Yacine Ait-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1995 .

[33]  Timothy G. Conley,et al.  Short-term interest rates as subordinated diffusions , 1997 .

[34]  Xia Su,et al.  On irreversible investment , 2006, Finance Stochastics.

[35]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[36]  Allen M. Weiss,et al.  Investment in technological innovations: An option pricing approach , 1997 .

[37]  LUKASZ SZPRUCH,et al.  Comparing Hitting Time Behavior of Markov Jump Processes and Their Diffusion Approximations , 2010, Multiscale Model. Simul..

[38]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[39]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[40]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[41]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.