Materials and transducers toward selective wireless gas sensing.

Wireless sensors are devices in which sensing electronic transducers are spatially and galvanically separated from their associated readout/display components. The main benefits of wireless sensors, as compared to traditional tethered sensors, include the non-obtrusive nature of their installations, higher nodal densities, and lower installation costs without the need for extensive wiring.1–3 These attractive features of wireless sensors facilitate their development toward measurements of a wide range of physical, chemical, and biological parameters of interest. Examples of available wireless sensors include devices for sensing of pH, pressure, and temperature in medical, pharmaceutical, animal health, livestock condition, automotive, and other applications.4–7 Some implementations of wireless gas sensors can be already found in monitoring of analyte gases (e.g. carbon dioxide, water vapor, oxygen, combustibles) in relatively interference-free industrial and indoor environments.8,9 However, unobtrusive wireless gas sensors are urgently needed for many more diverse applications ranging from wearable sensors at the workplace, urban environment, and battlefield, to monitoring of containers with toxic industrial chemicals while in transit, to medical monitoring of hospitalized and in-house patients, to detection of food freshness in individual packages, and to distributed networked sensors over large areas (also known as wireless sensor networks, WSNs). Unfortunately, in these and numerous other practical applications, the available wireless gas sensors fall short of meeting emerging measurement needs in complex environments. In particular, existing wireless gas sensors cannot perform highly selective gas detection in the presence of high levels of interferences and cannot quantitate several components in gas mixtures. 1.1. Diversity Of Monitoring Needs Of Volatiles The monitoring of numerous gases of environmental, industrial, and homeland security concern is needed over the broad range of their regulated exposure concentrations. Figure 1 illustrates the relationships between several regulated exposure levels spanning several orders of magnitude of gas concentrations. Typical examples of concentrations of regulated exposure are presented in Table 110–14 for three groups of toxic volatiles such as volatile organic compounds (VOCs), toxic industrial chemicals (TICs), and chemical warfare agents (CWAs). These examples demonstrate the need for gas sensing capabilities with broad measurement dynamic ranges to cover 2 – 4 orders of magnitude in gas concentrations. Figure 1 Examples of regulated vapor-exposure limits established by different organizations: GPL: General Population Limit, established by USACHPPM – U.S. Army Center for Health Promotion and Preventative Medicine; PEL: Permissible Exposure Limit, established ... Table 1 Examples of regulated concentration levels (in ppm by volume) from three representative classes of toxic gases: VOCs, TICs, and CWAs.10–14 Additional needs for detection of volatiles originate from medical diagnostics, food safety, process monitoring, and other areas.15–17 In those applications, the types and levels of detected volatiles can provide the needed information for further control actions.

[1]  Cai-Hong Liu,et al.  Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study , 2009, Nanotechnology.

[2]  Marta Elena Díaz-García,et al.  Zeolites and zeolite-based materials in analytical chemistry , 2006 .

[3]  Kurt D. Benkstein,et al.  The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors , 2007 .

[4]  Edward T. Zellers,et al.  Investigation of nematic liquid crystals as surface acoustic wave sensor coatings for discrimination between isomeric aromatic organic vapors , 1994 .

[5]  Keat Ghee Ong,et al.  A Wireless, Passive Sensor for Quantifying Packaged Food Quality , 2007, Sensors.

[6]  J. Grate,et al.  Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays. , 1999, Analytical chemistry.

[7]  A. J. Gandolfi,et al.  A Wearable and Wireless Sensor System for Real-Time Monitoring of Toxic Environmental Volatile Organic Compounds , 2009, IEEE Sensors Journal.

[8]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[9]  Craig J. Medforth,et al.  Self-assembled porphyrin nanostructures. , 2009, Chemical communications.

[10]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[11]  A. Hierlemann,et al.  Configurable electrodes for capacitive-type sensors and chemical sensors , 2006, IEEE Sensors Journal.

[12]  M. Hamedi,et al.  Bridging dimensions in organic electronics: assembly of electroactive polymer nanodevices from fluids. , 2009, Nano letters.

[13]  A. Karim,et al.  Suppression of Dewetting in Nanoparticle-Filled Polymer Films , 2000 .

[14]  J. Pleil Breath Biomarkers Networking Sessions at PittCon 2010, Orlando, Florida , 2010, Journal of breath research.

[15]  F. Zamborini,et al.  Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles. , 2008, ACS nano.

[16]  Peter Enoksson,et al.  Low-power humidity sensor for RFID applications , 2008 .

[17]  W. H. King Piezoelectric Sorption Detector. , 1964 .

[18]  G. Heiland,et al.  Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen , 1954 .

[19]  Eugene H. Kim,et al.  Electronic properties of a metallic nanoparticle coupled to a graphene nanoribbon: A single-electron field effect transistor , 2009 .

[20]  D. Diamond,et al.  Chemo/bio-sensor networks , 2006, Nature materials.

[21]  John A. Rogers,et al.  Polymer Imprint Lithography with Molecular-Scale Resolution , 2004 .

[22]  Duncan E Akporiaye Towards a Rational Synthesis of Large-Pore Zeolite-Type Materials? , 1998, Angewandte Chemie.

[23]  Bertil Sundqvist,et al.  Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: Applications as a pressure and gas concentration transducer , 1986 .

[24]  S. Gruszczynski,et al.  Integrated four-beam dual-band antenna array fed by broadband Butler matrix , 2007 .

[25]  G. Pioggia,et al.  A high-performance measurement system for simultaneous mass and resistance variation measurements on gas sensing polymer films , 2005 .

[26]  R. A. McGill,et al.  Fullerene as an adsorbent for gases and vapours , 1993 .

[27]  Ivana Murković Steinberg,et al.  Radio-frequency tag with optoelectronic interface for distributed wireless chemical and biological sensor applications , 2009 .

[28]  Bing-Joe Hwang,et al.  Recognition of alcohol vapor molecules by simultaneous measurements of resistance changes on polypyrrole-based composite thin films and mass changes on a piezoelectric crystal , 2001 .

[29]  J. Goschnick,et al.  Air quality monitoring and fire detection with the Karlsruhe electronic micronose KAMINA , 2002 .

[30]  A. Cornet,et al.  Use of zeolite films to improve the selectivity of reactive gas sensors , 2003 .

[31]  H. Haick,et al.  Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors , 2010, British Journal of Cancer.

[32]  J. FRASER STODDART,et al.  Noncovalent functionalization of single-walled carbon nanotubes. , 2009, Accounts of chemical research.

[33]  K. Dubowski Breath analysis as a technique in clinical chemistry. , 1974, Clinical chemistry.

[34]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[35]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[36]  S. Barth,et al.  Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents. , 2008, Analytical chemistry.

[37]  Basil I. Swanson,et al.  Surface acoustic wave thin-film chemical microsensors based on covalently bound C60 derivatives: a molecular self-assembly approach , 1993 .

[38]  Radislav A Potyrailo,et al.  Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. , 2007, Analytical chemistry.

[39]  J. Haber,et al.  Electric Conductivity and Catalytic Activity of Semiconducting Oxide Catalysts , 1957, Nature.

[40]  C. L. Britton,et al.  Design and performance of a microcantilever-based hydrogen sensor , 2003 .

[41]  Gang Zou,et al.  Polydiacetylene-based colorimetric sensor microarray for volatile organic compounds , 2010 .

[42]  U. Weimar,et al.  Capacitive Humidity Sensors on Flexible RFID Labels , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[43]  E. Dalcanale,et al.  Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph , 2009 .

[44]  Mira Josowicz,et al.  Composites of intrinsically conducting polymers as sensing nanomaterials. , 2008, Chemical reviews.

[45]  Franz L. Dickert,et al.  Fullerene/liquid crystal mixtures as QMB- and SAW-coatings – detection of diesel- and solvent-vapours , 1997 .

[46]  Alan Gelperin,et al.  DNA-decorated carbon nanotubes for chemical sensing. , 2005 .

[47]  K. G. Ong,et al.  A resonant printed-circuit sensor for remote query monitoring of environmental parameters , 2000 .

[48]  John M. Baranoski,et al.  Domestic Preparedness Program: Testing of the VaporTracer Against Chemical Warfare Agents , 2002 .

[49]  Udo Weimar,et al.  Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous oragnic vapours in the environment , 1995 .

[50]  Radislav A Potyrailo,et al.  Chemical sensors based on micromachined transducers with integrated piezoresistive readout. , 2006, Analytical chemistry.

[51]  C A Grimes,et al.  A wireless, remote query ammonia sensor. , 2001, Sensors and actuators. B, Chemical.

[52]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[53]  G. Nelles,et al.  Aging of 1,ω-Alkyldithiol Interlinked Au Nanoparticle Networks , 2009 .

[54]  K. Varahramyan,et al.  A Chipless RFID Sensor System for Cyber Centric Monitoring Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[55]  B. Snopok,et al.  Multisensor systems for chemical analysis: state-of-the-art in Electronic Nose technology and new trends in machine olfaction , 2002 .

[56]  Liang Feng,et al.  An Optoelectronic Nose for Detection of Toxic Gases , 2009, Nature chemistry.

[57]  C. Hagleitner,et al.  Smart single-chip gas sensor microsystem , 2001, Nature.

[58]  Martin Moskovits,et al.  Metal oxide "nanosponges" as chemical sensors: highly sensitive detection of hydrogen with nanosponge titania. , 2007, Angewandte Chemie.

[59]  Peter Alfred Payne,et al.  High-frequency measurements of conducting polymers: development of a new technique for sensing volatile chemicals , 1995 .

[60]  G. Whitesides,et al.  Fabrication of conjugated polymer nanowires by edge lithography. , 2008, Nano letters.

[61]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[62]  Jay W Grate,et al.  Hydrogen-bond acidic polymers for chemical vapor sensing. , 2008, Chemical reviews.

[63]  Bo Yu,et al.  Forming Highly Ordered Arrays of Functionalized Polymer Nanowires by Dewetting on Micropillars , 2007 .

[64]  Radislav A Potyrailo,et al.  Polymeric sensor materials: toward an alliance of combinatorial and rational design tools? , 2006, Angewandte Chemie.

[65]  Tao Deng,et al.  Selective Chemical Sensing Using Structurally Colored Core-Shell Colloidal Crystal Films , 2008, IEEE Sensors Journal.

[66]  J. Grate,et al.  Selective vapor sorption by polymers and cavitands on acoustic wave sensors:  is this molecular recognition? , 1996, Analytical chemistry.

[67]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[68]  B. Vercelli,et al.  Gold Nanoparticles Linked by Pyrrole- and Thiophene-Based Thiols. Electrochemical, Optical, and Conductive Properties , 2008 .

[69]  Thomas Kleine-Ostmann,et al.  Conductivity of single-stranded and double-stranded deoxyribose nucleic acid under ambient conditions: The dominance of water , 2006 .

[70]  Ting Zhang,et al.  A gas nanosensor unaffected by humidity , 2009, Nanotechnology.

[71]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[72]  V. Alchanatis,et al.  Review: Sensing technologies for precision specialty crop production , 2010 .

[73]  N. Kybert,et al.  Intrinsic response of graphene vapor sensors. , 2008, Nano letters.

[74]  Bryant D. Taylor,et al.  Measurement of multiple unrelated physical quantities using a single magnetic field response sensor , 2007 .

[75]  G. Grüner,et al.  Influence of Mobile Ions on Nanotube Based FET Devices , 2003 .

[76]  Richard B. Kaner,et al.  Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms , 2004 .

[77]  Tao Luo,et al.  p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubes for detection of nerve agents , 2010 .

[78]  Xujie Yang,et al.  Electropolymerized Multilayer Conducting Polymers with Response to Gaseous Hydrogen Chloride , 2005 .

[79]  Richard Fletcher,et al.  Low-cost electromagnetic tagging : design and implementation , 2002 .

[80]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[81]  R. Potyrailo,et al.  Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. , 2008, Talanta.

[82]  Anantha Chandrakasan,et al.  A 32-$\mu$ W 1.83-kS/s Carbon Nanotube Chemical Sensor System , 2009, IEEE Journal of Solid-State Circuits.

[83]  N. Martín New challenges in fullerene chemistry. , 2006, Chemical communications.

[84]  Jin Hu,et al.  Hydrogen-Bond Acidic Hyperbranched Polymers for Surface Acoustic Wave (SAW) Sensors , 2004 .

[85]  Gunter Hagen,et al.  Metal-Organic Frameworks for Sensing Applications in the Gas Phase , 2009, Sensors.

[86]  Jie Liu,et al.  Guided growth of nanoscale conducting polymer structures on surface-functionalized nanopatterns. , 2006, Journal of the American Chemical Society.

[87]  Craig A. Grimes,et al.  A wireless, passive carbon nanotube-based gas sensor , 2002 .

[88]  Alanson P. Sample,et al.  Design of an RFID-Based Battery-Free Programmable Sensing Platform , 2008, IEEE Transactions on Instrumentation and Measurement.

[89]  T. Russell,et al.  Electrically induced structure formation and pattern transfer , 2000, Nature.

[90]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[91]  Nathan S. Lewis,et al.  Array-based vapor sensing using chemically sensitive, carbon black-Polymer resistors , 1996 .

[92]  Hagit Messer,et al.  Environmental Monitoring by Wireless Communication Networks , 2006, Science.

[93]  Ikmo Park,et al.  A novel wireless, passive CO2 sensor incorporating a surface acoustic wave reflective delay line , 2007 .

[94]  Akio Yasuda,et al.  Chemiresistor coatings from Pt- and Au-nanoparticle/nonanedithiol films: sensitivity to gases and solvent vapors , 2004 .

[95]  Vikram Joshi,et al.  Nanoelectronic Carbon Dioxide Sensors , 2004 .

[96]  Stephanus Buettgenbach,et al.  Monolithic fabrication of wireless miniaturized quartz crystal microbalance (QCM-R) arrays and their application for biochemical sensors , 2003 .

[97]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[98]  A. Freedman,et al.  Fluoropolymer-based capacitive carbon dioxide sensor , 2006 .

[99]  Pengfei Pang,et al.  Humidity effect on the dithiol-linked gold nanoparticles interfaced chemiresistor sensor for VOCs analysis , 2006 .

[100]  Bing-Lin Gu,et al.  Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor , 2008, 0803.1516.

[101]  Jin Luo,et al.  Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties. , 2007, Journal of the American Chemical Society.

[102]  Lee E. Weiss,et al.  Inkjet printed chemical sensor array based on polythiophene conductive polymers , 2007 .

[103]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[104]  D. Butler Translational research: Crossing the valley of death , 2008, Nature.

[105]  J. Grate,et al.  Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays , 1991 .

[106]  K. Najafi,et al.  A passive wireless integrated humidity sensor , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[107]  Yang Yang,et al.  On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment , 2004 .

[108]  T. Bein,et al.  Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing , 2009 .

[109]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[110]  B. H. Weiller,et al.  Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. , 2005, Small.

[111]  Franz L. Dickert,et al.  Supramolecular detection of solvent vapours with calixarenes: Mass-sensitive sensors, molecular mechanics and BET studies , 1995 .

[112]  Young Chul Kim,et al.  Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates. , 2008, Nano letters.

[113]  C. A. Ross,et al.  Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography. , 2008, Nano letters.

[114]  Nicolaas F. de Rooij,et al.  Microsystem technologies for implantable applications , 2007 .

[115]  A. Flammini,et al.  Model and Experimental Characterization of the Dynamic Behavior of Low-Power Carbon Monoxide MOX Sensors Operated With Pulsed Temperature Profiles , 2009, IEEE Transactions on Instrumentation and Measurement.

[116]  Antonio J. Ricco,et al.  NEW ORGANIC MATERIALS SUITABLE FOR USE IN CHEMICAL SENSOR ARRAYS , 1998 .

[117]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[118]  D. A. Nelson,et al.  Sorptive behavior of monolayer-protected gold nanoparticle films: implications for chemical vapor sensing. , 2003, Analytical chemistry.

[119]  J. Gutiérrez,et al.  New sensors based on the magnetoelastic resonance of metallic glasses , 2000 .

[120]  Bingqing Wei,et al.  Miniaturized gas ionization sensors using carbon nanotubes , 2003, Nature.

[121]  T. Ishihara,et al.  Sensitive detection of nitrogen oxides based upon capacitance changes in binary oxide mixture , 1996 .

[122]  Gregory A. Bakken,et al.  Computational methods for the analysis of chemical sensor array data from volatile analytes. , 2000, Chemical reviews.

[123]  G. Korotcenkov,et al.  Porous Semiconductors: Advanced Material for Gas Sensor Applications , 2010 .

[124]  G. Scholl,et al.  Theory and application of passive SAW radio transponders as sensors , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[125]  A. Pham,et al.  Carbon Nanotube Based Microwave Resonator Gas Sensors , 2006 .

[126]  D. Cram Cavitands: Organic Hosts with Enforced Cavities , 1983, Science.

[127]  Sudip Misra,et al.  Guide to Wireless Sensor Networks , 2009, Computer Communications and Networks.

[128]  Z. Öztürk,et al.  Recent studies chemical sensors based on phthalocyanines , 2009 .

[129]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[130]  Rochus Schmid,et al.  A novel method to measure diffusion coefficients in porous metal-organic frameworks. , 2010, Physical chemistry chemical physics : PCCP.

[131]  Jianmin Yuan,et al.  Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study , 2009 .

[132]  H. Ishida,et al.  Gas sensor network for air-pollution monitoring , 2005 .

[133]  Hargsoon Yoon,et al.  Passive wireless sensors using electrical transition of carbon nanotube junctions in polymer matrix , 2006 .

[134]  E. Comini,et al.  Surface Ionization Gas Detection on Platinum and Metal Oxide Surfaces , 2009, IEEE Sensors Journal.

[135]  Gunter Hagen,et al.  Zeolites — Versatile materials for gas sensors , 2008 .

[136]  Craig A. Grimes,et al.  Gas sensing characteristics of multi-wall carbon nanotubes , 2001 .

[137]  J. Grate Acoustic wave microsensor arrays for vapor sensing. , 2000, Chemical reviews.

[138]  Zulfiqur Ali,et al.  Data analysis for electronic nose systems , 2006 .

[139]  E. Snow,et al.  Chemical vapor detection using single-walled carbon nanotubes. , 2006, Chemical Society reviews.

[140]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[141]  Radislav A. Potyrailo,et al.  Analytical spectroscopic tools for high-throughput screening of combinatorial materials libraries , 2003 .

[142]  Akio Yasuda,et al.  Vapor Sorption and Electrical Response of Au‐Nanoparticle– Dendrimer Composites , 2007 .

[143]  Michele Suman,et al.  Cavitands at Work: From Molecular Recognition to Supramolecular Sensors , 2004 .

[144]  A R Al-Ali,et al.  A Mobile GPRS-Sensors Array for Air Pollution Monitoring , 2010, IEEE Sensors Journal.

[145]  Saurabh Chopra,et al.  Selective gas detection using a carbon nanotube sensor , 2003 .

[146]  J. Farrar,et al.  Pressure-sensitive telemetering capsule for study of gastrointestinal motility. , 1957, Science.

[147]  Liwei Lin,et al.  An electrothermal carbon nanotube gas sensor. , 2007, Nano letters.

[148]  Nicola Marzari,et al.  Sensing mechanisms for carbon nanotube based NH3 gas detection. , 2009, Nano letters.

[149]  Chunguang Jin,et al.  Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays. , 2008, Analytical chemistry.

[150]  R. A. McGill,et al.  Detection of 2,4-dinitrotoluene using microcantilever sensors , 2004 .

[151]  Ingemar Lundström,et al.  Investigation of quartz microbalance and ChemFET transduction of molecular recognition events in a metalloporphyrin film , 2009 .

[152]  D. Reinhoudt,et al.  Molecular Recognition by Self-Assembled Monolayers of Cavitand Receptors , 1994, Science.

[153]  Stephane Evoy,et al.  Dielectrophoretically assembled polymer nanowires for gas sensing , 2007 .

[154]  R. Naik,et al.  Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. , 2010, ACS nano.

[155]  Hargsoon Yoon,et al.  Nanowire sensor applications based on radio frequency phase shift in coplanar waveguide , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[156]  Dongxiang Zhou,et al.  Tin oxide thin films prepared by aerosol-assisted chemical vapor deposition and the characteristics on gas detection , 2010 .

[157]  Craig A. Grimes,et al.  A Carbon Nanotube-based Sensor for CO2 Monitoring , 2001 .

[158]  M. Peris,et al.  A 21st century technique for food control: electronic noses. , 2009, Analytica chimica acta.

[159]  R. A. McGill,et al.  Examination of Vapor Sorption by Fullerene, Fullerene-Coated Surface Acoustic Wave Sensors, Graphite, and Low-Polarity Polymers Using Linear Solvation Energy Relationships , 1995 .

[160]  A. Yasuda,et al.  Gold nanoparticle/PPI-dendrimer based chemiresistors: Vapor-sensing properties as a function of the dendrimer size , 2003 .

[161]  Laura Pirondini,et al.  Molecular recognition at the gas-solid interface: a powerful tool for chemical sensing. , 2007, Chemical Society reviews.

[162]  Shih-Lin Hung,et al.  Application of m-CNTs/NaClO4/Ppy to a fast response, room working temperature ethanol sensor , 2008 .

[163]  Manuele Bernabei,et al.  Design of a very large chemical sensor system for mimicking biological olfaction , 2010 .

[164]  Wen Jung Li,et al.  Ultralow-Power Alcohol Vapor Sensors Using Chemically Functionalized Multiwalled Carbon Nanotubes , 2007, IEEE Transactions on Nanotechnology.

[165]  Cheryl Surman,et al.  Combinatorial screening of polymeric sensing materials using RFID sensors: combined effects of plasticizers and temperature. , 2009, Journal of combinatorial chemistry.

[166]  I. Elmi,et al.  Discontinuously Operated Metal Oxide Gas Sensors for Flexible Tag Microlab Applications , 2008, IEEE Sensors Journal.

[167]  Hong‐Cai Zhou,et al.  RECENT ADVANCES IN THE STUDY OF MESOPOROUS METAL-ORGANIC FRAMEWORKS , 2010 .

[168]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[169]  Michele Penza,et al.  Carbon nanotubes-based surface acoustic waves oscillating sensor for vapour detection , 2005 .

[170]  Renato Guida,et al.  Photonic bandgap fiber-enabled Raman detection of nitrogen gas , 2009, Defense + Commercial Sensing.

[171]  J. Janata,et al.  Stabilization of electronic properties of (1R)-(−)-10-camphorsulfonic acid doped polyaniline by UV irradiation , 2007 .

[172]  T. Ishihara,et al.  A new type of CO2 gas sensor based on capacitance changes , 1991 .

[173]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[174]  Ho Won Jang,et al.  One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues , 2010, Sensors.

[175]  Craig A. Poland,et al.  Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma , 2010, Particle and Fibre Toxicology.

[176]  Keiji Nakagawa,et al.  Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. , 2010, Nature chemistry.

[177]  D. Diamond,et al.  Wireless sensor networks and chemo-/biosensing. , 2008, Chemical reviews.

[178]  Todd E. Mlsna,et al.  Chemicapacitive microsensors for volatile organic compound detection , 2003 .

[179]  Robert E. Gump,et al.  Carbon nanotube-based ethanol sensors , 2009, Nanotechnology.

[180]  Luisa Torsi,et al.  Multi-parameter gas sensors based on organic thin-film-transistors , 2000 .

[181]  Jeng-Shong Shih,et al.  Adsorption study of organic molecules on fullerene with piezoelectric crystal detection system , 1998 .

[182]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[183]  H. Haick,et al.  Diagnosing lung cancer in exhaled breath using gold nanoparticles. , 2009, Nature nanotechnology.

[184]  A. Kummel,et al.  Chemical identification using an impedance sensor based on dispersive charge transport , 2006 .

[185]  Ravi S Kane,et al.  Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[186]  Dermot Diamond,et al.  Monitoring chemical plumes in an environmental sensing chamber with a wireless chemical sensor network , 2007 .

[187]  Gunter Hagen,et al.  An initial physics-based model for the impedance spectrum of a hydrocarbon sensor with a zeolite/Cr2O3 interface , 2008 .

[188]  E. Zellers,et al.  Model of vapor-induced resistivity changes in gold-thiolate monolayer-protected nanoparticle sensor films. , 2007, Analytical chemistry.

[189]  E. Zellers,et al.  Electron-Beam Patterned Monolayer-Protected Gold Nanoparticle Interface Layers on a Chemiresistor Vapor Sensor Array , 2011, IEEE Sensors Journal.

[190]  S. Einfeldt,et al.  X線微小回折による無マスク・ペンデオエピタクシーによって成長したGaN(0001)層中の局部歪,欠陥および結晶学的傾斜 , 2005 .

[191]  Douglas R. Kauffman,et al.  Understanding the sensor response of metal-decorated carbon nanotubes. , 2010, Nano letters.

[192]  N. Lewis Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors. , 2004, Accounts of chemical research.

[193]  Berend Smit,et al.  Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. , 2008, Chemical reviews.

[194]  Radislav A. Potyrailo,et al.  Recognition and Quantification of Perchloroethylene, Trichloroethylene, Vinyl Chloride, and Three Isomers of Dichloroethylene Using Acoustic Wave Sensor Array , 2004 .

[195]  P. Su,et al.  Low-humidity sensing properties of carbon nanotubes measured by a quartz crystal microbalance , 2009 .

[196]  Vijay K. Varadan,et al.  A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor , 2004 .

[197]  Y. Kanno,et al.  Quartz Crystal Capacitive Sensor with Inductance?Capacitance Resonance Circuit for Vapor Sensing , 2007 .

[198]  Khalil Najafi,et al.  A passive humidity monitoring system for in situ remote wireless testing of micropackages , 2002 .

[199]  R. Potyrailo Enhancement in screening throughput and density of combinatorial libraries using wavelet analysis , 2004 .

[200]  Herbert Pfeifer,et al.  Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere , 2008 .

[201]  Jong-Ho Cha,et al.  Hydrogen gas sensor based on proton-conducting clathrate hydrate. , 2009, Angewandte Chemie.

[202]  Carles Cané,et al.  Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters , 2010 .

[203]  T. Bein,et al.  Molecular recognition on acoustic wave devices: sorption in chemically anchored zeolite monolayers , 1992 .

[204]  M. Ancona,et al.  Scaling Properties of Gold Nanocluster Chemiresistor Sensors , 2006, IEEE Sensors Journal.

[205]  R. A. McGill,et al.  Dewetting Effects on Polymer-Coated Surface Acoustic Wave Vapor Sensors , 1995 .

[206]  R. Potyrailo,et al.  Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors , 2009 .

[207]  T. Swager,et al.  Conducting-Polymer-Based Chemical Sensors: Transduction Mechanisms , 2007 .

[208]  James Brusey,et al.  Wireless Sensor Networks to Enable the Passive House - Deployment Experiences , 2009, EuroSSC.

[209]  Kwang-Ho Kwon,et al.  Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films , 2009 .

[210]  J. Coronas Present and future synthesis challenges for zeolites , 2010 .

[211]  S. Mitra,et al.  Modifying the sorption properties of multi-walled carbon nanotubes via covalent functionalization. , 2009, The Analyst.

[212]  E. Castano,et al.  Solid State Gas Sensor for Fast Carbon Dioxide Detection , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[213]  O. Wolfbeis Fiber-optic chemical sensors and biosensors. , 2000, Analytical chemistry.

[214]  Theodor Doll,et al.  Field-effect-induced gas sensitivity changes in metal oxides , 1997 .

[215]  W. Wlodarski,et al.  Hydrogen gas sensor based on highly ordered polyaniline nanofibers , 2009 .

[216]  Ionic liquids used as QCM coating materials for the detection of alcohols , 2008 .

[217]  Jose Maria Kenny,et al.  NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory , 2003 .

[218]  Radislav A Potyrailo,et al.  Boosting sensitivity of organic vapor detection with silicone block polyimide polymers. , 2004, Analytical chemistry.

[219]  Radislav A. Potyrailo,et al.  Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorial materials , 2004 .

[220]  T. Bein,et al.  Direct growth of Cu3(BTC)2(H2O)3 · xH2O thin films on modified QCM-gold electrodes – Water sorption isotherms , 2008 .

[221]  A. Star,et al.  Carbon nanotube sensors for exhaled breath components , 2007 .

[222]  H. Haick,et al.  Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. , 2008, Nano letters.

[223]  Stephen D. Evans,et al.  Vapour sensing using hybrid organic-inorganic nanostructured materials , 2000 .

[224]  Geoffrey A. Ozin,et al.  Engineered Sensitivity of Structured Tin Dioxide Chemical Sensors: Opaline Architectures with Controlled Necking , 2003 .

[225]  E Romero,et al.  Energy scavenging sources for biomedical sensors , 2009, Physiological measurement.

[226]  R. A. McGill,et al.  Nerve agent detection using networks of single-walled carbon nanotubes , 2003 .

[227]  T. Bein,et al.  Molecular sieve sensors for selective ethanol detection , 1992 .

[228]  Bo Li,et al.  Chemical sensing using nanostructured polythiophene transistors. , 2008, Nano letters.

[229]  A. Kolmakov,et al.  Evidence of the self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors , 2008, Nanotechnology.

[230]  J. Mitrovics,et al.  The detection of evaporating hazardous material released from moving sources using a gas sensor network , 2010 .

[231]  C. Janiak Functional Organic Analogues of Zeolites Based on Metal–Organic Coordination Frameworks , 1997 .

[232]  Aikaterini Mitrokotsa,et al.  Integrated RFID and Sensor Networks: Architectures and Applications , 2010 .

[233]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[234]  C. Nguyen-Duc,et al.  Synthesis of multi-walled carbon nanotubes for NH3 gas detection , 2007 .

[235]  Molecular recognition of halogen-tagged aromatic VOCs at the air-silicon interface. , 2010, Chemical communications.

[236]  Aranzazu del Campo,et al.  Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. , 2008, Chemical reviews.

[237]  M. Snyder,et al.  Hierarchical nanomanufacturing: from shaped zeolite nanoparticles to high-performance separation membranes. , 2007, Angewandte Chemie.

[238]  N. Bârsan,et al.  Electronic nose: current status and future trends. , 2008, Chemical reviews.

[239]  Andreas Merz,et al.  Chemosensitive properties of poly-4,4′-dialkoxy-2,2′-bipyrroles , 2006 .

[240]  K. Schug,et al.  Fiber optic sensor for simultaneous determination of atmospheric nitrogen dioxide, ozone, and relative humidity. , 2009, Analytical chemistry.

[241]  Rodney Andrews,et al.  Multi-walled carbon nanotube arrays for gas sensing applications , 2008, Nanotechnology.

[242]  V. Heaslip,et al.  Wireless technology in the evolution of patient monitoring on general hospital wards , 2010, Journal of medical engineering & technology.

[243]  R. Paolesse,et al.  Metalloporphyrins based artificial olfactory receptors , 2007 .

[244]  Radislav A. Potyrailo,et al.  Dual-response resonant chemical sensors for multianalyte analysis , 2005 .

[245]  Yi Lin,et al.  Functionalized carbon nanotubes: properties and applications. , 2002, Accounts of chemical research.

[246]  Mincheol Chang,et al.  Chemical Sensors Based on Highly Conductive Poly(3,4‐ethylenedioxythiophene) Nanorods , 2005 .

[247]  R. Salvarezza,et al.  Enhanced stability of thiolate self-assembled monolayers (SAMs) on nanostructured gold substrates. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[248]  Michele Penza,et al.  Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors , 2008 .

[249]  Gang Sun,et al.  Gas Sensors Based on Electrospun Nanofibers , 2009, Sensors.

[250]  Douglas R. Kauffman,et al.  Decorated carbon nanotubes with unique oxygen sensitivity. , 2009, Nature chemistry.

[251]  S. Ravi P. Silva,et al.  The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation , 2007 .

[252]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[253]  S. Tumański Induction coil sensors—a review , 2007 .

[254]  Todd E. Mlsna,et al.  Chemicapacitive Microsensors for Chemical Warfare Agent and Toxic Industrial Chemical Detection , 2006 .

[255]  Amin Salehi-Khojin,et al.  On the sensing mechanism in carbon nanotube chemiresistors. , 2011, ACS nano.

[256]  Hongwei Song,et al.  Porous In2O3:RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) Nanotubes: Electrospinning Preparation and Room Gas-Sensing Properties , 2010 .

[257]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[258]  C A Grimes,et al.  A wireless, remote query magnetoelastic CO2 sensor. , 2000, Journal of environmental monitoring : JEM.

[259]  Tao Wei,et al.  Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors , 2009 .

[260]  W. Cai,et al.  Hetero-apertured micro/nanostructured ordered porous array: layer-by-layered construction and structure-induced sensing parameter controllability. , 2009, ACS nano.

[261]  H. Möhwald,et al.  Structural changes in stimuli-responsive nanoparticle/dendrimer composite films upon vapor sorption , 2009 .

[262]  F. Musio,et al.  Low frequency a.c. response of polypyrrole gas sensors , 1997 .

[263]  T Hirschfeld Instrumentation in the Next Decade , 1985, Science.

[264]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[265]  Kyle D. Anderson,et al.  Bioinspired Material Approaches to Sensing , 2009 .

[266]  K. Takahata,et al.  A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer , 2009 .

[267]  R. Kaner,et al.  Graphene-like nano-sheets for surface acoustic wave gas sensor applications , 2009 .

[268]  R. Schmid,et al.  Surface chemistry of metal-organic frameworks at the liquid-solid interface. , 2011, Angewandte Chemie.

[269]  Isabelle Dufour,et al.  Zeolite-modified cantilevers for the sensing of nitrotoluene vapors , 2009 .

[270]  F. Kapteijn,et al.  Selective sensor utilizing a thin monolayer of b-oriented silicalite-1 crystals-magneto-elastic ribbon assembly. , 2009, The Analyst.

[271]  T. Hyodo,et al.  Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu(3)Ti(4)O(12) thin films. , 2006, Nano letters.

[272]  R. Potyrailo,et al.  Combinatorial and high-throughput development of sensing materials: the first 10 years. , 2008, Chemical reviews.

[273]  Xiaogan Li,et al.  Interaction of Dimethylmethylphosphonate with Zeolite Y: Impedance-Based Sensor for Detecting Nerve Agent Simulants , 2010 .

[274]  Leonard R. MacGillivray,et al.  Metal-organic frameworks : design and application , 2010 .

[275]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[276]  Zhongqing Wei,et al.  Reduced graphene oxide molecular sensors. , 2008, Nano letters.

[277]  E. Zellers,et al.  Limits of recognition for simple vapor mixtures determined with a microsensor array. , 2004, Analytical chemistry.

[278]  Arthur W. Snow,et al.  Simultaneous electrical conductivity and piezoelectric mass measurements on iodine-doped phthalocyanine Langmuir-Blodgett films , 1986 .

[279]  C. Pearson,et al.  An inkjet-printed chemical fuse , 2005 .

[280]  Al-Amin Dhirani,et al.  Charge transport in nanoparticle assemblies. , 2008, Chemical reviews.

[281]  Andreas Manz,et al.  Scaling and the design of miniaturized chemical-analysis systems , 2006, Nature.

[282]  Scott R. Wilson,et al.  A functional zeolite analogue assembled from metalloporphyrins , 2002, Nature materials.

[283]  Xiangqun Zeng,et al.  Multichannel monolithic quartz crystal microbalance gas sensor array. , 2009, Analytical chemistry.

[284]  Je Hoon Oh,et al.  Evaluation of the limit-of-detection capability of carbon black-polymer composite sensors for volatile breath biomarkers , 2010 .

[285]  Di Zhang,et al.  Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings , 2009, Nanotechnology.

[286]  Ooi Kiang Tan,et al.  Humidity and Temperature Effects on Carbon Nanotube Field-Effect Transistor-Based Gas Sensors , 2008 .

[287]  Filip Braet,et al.  Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. , 2010, Environmental science & technology.

[288]  Xi-Wen He,et al.  Crown Ether-coated Piezoelectric Crystal Sensor Array for Detection of Organic Vapor Mixtures Using Several Chemometric Methods , 1997 .

[289]  Mianqi Xue,et al.  Thinner is Better: An Ultrathin Conducting Oligoaniline Film for Gas Microsensors with Ultralow Detection Limits. , 2009, Macromolecular rapid communications.

[290]  Segyeong Joo,et al.  Chemical sensors with integrated electronics. , 2008, Chemical reviews.

[291]  Osvaldo N. Oliveira,et al.  Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing: Ethanol detection using electrical capacitance measurements , 2008 .

[292]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[293]  Transmission line impedance of carbon nanotube thin films for chemical sensing , 2006, cond-mat/0612432.

[294]  M. von Schickfus,et al.  Inductively coupled, polymer coated surface acoustic wave sensor for organic vapors , 2001 .

[295]  R. Paolesse,et al.  Chemical sensitivity of porphyrin assemblies , 2010 .

[296]  Douglas R. Kauffman,et al.  Carbon nanotube gas and vapor sensors. , 2008, Angewandte Chemie.

[297]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[298]  G. C. Frye,et al.  Surface acoustic wave response to changes in viscoelastic film properties , 1990 .

[299]  Radislav A. Potyrailo,et al.  Wireless sensor array system for combinatorial screening of sensor materials , 2005 .

[300]  Gary Tepper,et al.  Improving the stability of surface acoustic wave (SAW) chemical sensor coatings using photopolymerization , 2007 .

[301]  B. H. Weiller,et al.  Polyaniline nanofiber composites with amines: Novel materials for phosgene detection , 2009 .

[302]  Mangilal Agarwal,et al.  Polymer-based microsensor for soil moisture measurement , 2008 .

[303]  K. Wise,et al.  A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity , 2005, Journal of Microelectromechanical Systems.

[304]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[305]  Detection of polar organic vapours with piezoelectric crystals coated with crown ethers , 1995 .

[306]  Babak Ziaie,et al.  Hydrogel-based microsensors for wireless chemical monitoring , 2009, Biomedical microdevices.

[307]  Fabienne Poncin-Epaillard,et al.  Polyaniline as a new sensitive layer for gas sensors , 2003 .

[308]  W.J. Fleming,et al.  New Automotive Sensors—A Review , 2008, IEEE Sensors Journal.

[309]  Young Joong Yoon,et al.  Functional antenna integrated with relative humidity sensor using synthesised polyimide for passive RFID sensing , 2007 .

[310]  Akio Yasuda,et al.  Vapor Sensitivity of Networked Gold Nanoparticle Chemiresistors: Importance of Flexibility and Resistivity of the Interlinkage , 2007 .

[311]  R. Ruoff,et al.  All-organic vapor sensor using inkjet-printed reduced graphene oxide. , 2010, Angewandte Chemie.

[312]  Arthur W. Snow,et al.  Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor , 1998 .

[313]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[314]  Adam H Love,et al.  Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers. , 2008, The Analyst.

[315]  S. V. Patel,et al.  Materials for capacitive carbon dioxide microsensors capable of operating at ambient temperatures , 2010 .

[316]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[317]  Sotiris E Pratsinis,et al.  Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. , 2010, Analytical chemistry.

[318]  A. Govindaraj,et al.  Graphene: the new two-dimensional nanomaterial. , 2009, Angewandte Chemie.

[319]  A Multi-Parameter Platform For Gas Sensing Using Semiconducting Metal Oxide Films , 2007, 2007 IEEE Sensors.

[320]  Christoph Hagleitner,et al.  Detection and discrimination capabilities of a multitransducer single-chip gas sensor system. , 2006, Analytical chemistry.

[321]  Filip Braet,et al.  Carbon nanomaterials in biosensors: should you use nanotubes or graphene? , 2010, Angewandte Chemie.

[322]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[323]  Hung-Bin Lin,et al.  Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor for organic vapors , 2003 .

[324]  Subhash Bhatia,et al.  Zeolite Membrane Based Selective Gas Sensors for Monitoring and Control of Gas Emissions , 2007 .

[325]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[326]  Laura Pirondini,et al.  Supramolecular sensing with phosphonate cavitands. , 2008, Chemistry.

[327]  Wojtek Wlodarski,et al.  Polypyrrole nanofiber surface acoustic wave gas sensors , 2008 .

[328]  E. Dalcanale,et al.  A supramolecular approach to sub-ppb aromatic VOC detection in air. , 2007, Chemical communications.

[329]  S. Seal,et al.  Metallic nanostructured materials based sensors , 2007 .

[330]  A. Pettersson,et al.  Laser-based standoff detection of explosives: a critical review , 2009, Analytical and bioanalytical chemistry.

[331]  Richard P Van Duyne,et al.  Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. , 2010, Analytical chemistry.

[332]  Y. Chu,et al.  Chemoselective gas sensing ionic liquids. , 2010, Chemical communications.

[333]  S De Vito,et al.  Wireless Sensor Networks for Distributed Chemical Sensing: Addressing Power Consumption Limits With On-Board Intelligence , 2011, IEEE Sensors Journal.

[334]  M. Wrighton,et al.  Characterization of a solid-state polyaniline-based transistor: water vapor dependent characteristics of a device employing a poly(vinyl alcohol)/phosphoric acid solid-state electrolyte , 1987 .

[335]  Beng Kang Tay,et al.  Effect of chemical oxidation on the gas sensing properties of multi-walled carbon nanotubes , 2009 .

[336]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[337]  A. Serrano,et al.  Fullerenes as sorbent materials for benzene, toluene, ethylbenzene, and xylene isomers preconcentration. , 2006, Journal of separation science.

[338]  N S Lewis,et al.  Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphosponate. , 2001, Analytical chemistry.

[339]  M. Fleischer,et al.  Stepwise improvement of (hetero-) polysiloxane sensing layers for CO2 detection operated at room temperature by modification of the polymeric network , 2010 .

[340]  Rongnong Zhou,et al.  AC-impedance-based chemical sensors for organic solvent vapors , 1996 .

[341]  Radislav A. Potyrailo,et al.  Dynamic high throughput screening of chemical libraries using acoustic-wave sensor system , 2002 .

[342]  Guang Lu,et al.  Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. , 2010, Journal of the American Chemical Society.

[343]  G. Fedder,et al.  Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors , 2010, Nanotechnology.

[344]  William P Flanagan,et al.  Fluorescence spectroscopy and multivariate spectral descriptor analysis for high-throughput multiparameter optimization of polymerization conditions of combinatorial 96-microreactor arrays. , 2003, Journal of combinatorial chemistry.

[345]  Yanlian Yang,et al.  Processing Matters: In situ Fabrication of Conducting Polymer Microsensors Enables Ultralow‐Limit Gas Detection , 2008 .

[346]  Patel,et al.  Differentiation of chemical components in a binary solvent vapor mixture using carbon/polymer composite-based chemiresistors , 2000, Analytical chemistry.

[347]  Bahgat Sammakia,et al.  Flexible chemiresistor sensors: thin film assemblies of nanoparticles on a polyethylene terephthalate substrate , 2010 .

[348]  C. Chiou,et al.  Piezoelectric crystal membrane chemical sensors based on fullerene C60 , 2001 .

[349]  D. Vaselaar,et al.  Direct-Write Vapor Sensors on FR4 Plastic Substrates , 2007, IEEE Sensors Journal.

[350]  Jing Li,et al.  Effects of electrode configuration on polymer carbon-black composite chemical vapor sensor performance , 2002 .

[351]  R. Masel,et al.  Nonthermal Current-Stimulated Desorption of Gases from Carbon Nanotubes , 2010, Science.

[352]  J. Fergus Perovskite oxides for semiconductor-based gas sensors , 2007 .

[353]  T. Merkel,et al.  Gas and Vapor Sorption, Permeation, and Diffusion in Glassy Amorphous Teflon AF1600 , 2002 .

[354]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[355]  Rodney S. Ruoff,et al.  Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets , 2008 .

[356]  Frank E Osterloh,et al.  Chemical sensing with LiMo3Se3 nanowire films. , 2005, Journal of the American Chemical Society.

[357]  M. B. Denton,et al.  Performance evaluation of a miniature ion mobility spectrometer drift cell for application in hand-held explosives detection ion mobility spectrometers , 2009, Analytical and bioanalytical chemistry.

[358]  David S. Ballantine,et al.  Acoustic wave sensors : theory, design, and physico-chemical applications , 1997 .

[359]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[360]  J. Travers,et al.  Water effects in polyaniline: A new conduction process , 1987 .

[361]  A Alec Talin,et al.  Stress-induced chemical detection using flexible metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[362]  Masahiko Tani,et al.  Introduction to Terahertz Pulses , 2005 .

[363]  V. Bondar,et al.  Sorption of gases and vapors in an amorphous glassy perfluorodioxole copolymer , 1999 .

[364]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[365]  J. Rebek Model studies in molecular recognition. , 1987, Science.

[366]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[367]  J W Grate,et al.  Highly Sorbent Films Derived from Ni(SCN)(2)(4-picoline)(4) for the Detection of Chlorinated and Aromatic Hydrocarbons with Quartz Crystal Microbalance Sensors. , 1998, Analytical chemistry.

[368]  Hans-Jörg Schneider,et al.  Binding mechanisms in supramolecular complexes. , 2009, Angewandte Chemie.

[369]  Dermot Diamond Peer Reviewed: Internet-Scale Sensing , 2004 .

[370]  Radislav A Potyrailo,et al.  Wireless resonant sensor array for high-throughput screening of materials. , 2007, The Review of scientific instruments.

[371]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[372]  B. Rogers,et al.  Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array , 2003 .

[373]  Y. Eichen,et al.  Sensing of Alkylating Agents Using Organic Field‐Effect Transistors , 2010 .

[374]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[375]  N S Lewis,et al.  Differential detection of enantiomeric gaseous analytes using carbon black-chiral polymer composite, chemically sensitive resistors. , 1998, Analytical chemistry.

[376]  K. Haupt Molecularly Imprinted Polymers as Recognition Elements in Sensors , 2008 .

[377]  Sadaki Nakano,et al.  FET hydrogen-gas sensor with direct heating of catalytic metal , 2008 .

[378]  Eric S. Snow,et al.  Improved chemical detection using single-walled carbon nanotube network capacitors , 2007 .

[379]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[380]  Nathan S Lewis,et al.  Vapor sensing using polymer/carbon black composites in the percolative conduction regime. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[381]  S. Pratsinis,et al.  Minimal cross-sensitivity to humidity during ethanol detection by SnO2–TiO2 solid solutions , 2009, Nanotechnology.

[382]  Ida A. Casalinuovo,et al.  Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection , 2006, Sensors (Basel, Switzerland).

[383]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[384]  Kohji Mitsubayashi,et al.  Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking. , 2005, Biosensors & bioelectronics.

[385]  M. Strano,et al.  Amine basicity (pKb) controls the analyte binding energy on single walled carbon nanotube electronic sensor arrays. , 2008, Journal of the American Chemical Society.

[386]  A. Gutierrez,et al.  Remote Monitoring of Fruit Postharvest Behaviour Based on Sensor Networks , 2010 .

[387]  Kefeng Zeng,et al.  Wireless Magnetoelastic Physical, Chemical, and Biological Sensors , 2007, IEEE Transactions on Magnetics.

[388]  B. H. Weiller,et al.  Practical chemical sensors from chemically derived graphene. , 2009, ACS nano.

[389]  N S Lewis,et al.  An investigation of the concentration dependence and response to analyte mixtures of carbon black/insulating organic polymer composite vapor detectors. , 2000, Analytical chemistry.

[390]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[391]  T. Swager,et al.  Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. , 2008, Journal of the American Chemical Society.

[392]  Chia-Jung Lu,et al.  A vapor selectivity study of microsensor arrays employing various functionalized ligand protected gold nanoclusters , 2006 .

[393]  Steve Semancik,et al.  Detecting chemical hazards with temperature-programmed microsensors: overcoming complex analytical problems with multidimensional databases. , 2009, Annual review of analytical chemistry.

[394]  I. Dékány,et al.  Alkylthiol-functionalized gold nanoparticles for sensing organic vapours: The connection between the adsorption isotherm and the sensor resistance , 2008 .

[395]  S. Brahim,et al.  Tailoring Gas Sensing Properties of Carbon Nanotubes , 2007 .

[396]  Robert E. Newnham,et al.  0–3 ceramic/polymer composite chemical sensors , 1989 .

[397]  Sanjay Mathur,et al.  Ultralow power consumption gas sensors based on self-heated individual nanowires , 2008 .

[398]  Bo Li,et al.  Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. , 2006, Journal of the American Chemical Society.

[399]  Makoto Furuki,et al.  Hybrid gas detector of squarylium dye Langmuir-Blodgett film deposited on a quartz oscillator , 1992 .

[400]  Craig A. Grimes,et al.  A Sentinel Sensor Network for Hydrogen Sensing , 2003 .

[401]  Jisun Im,et al.  Anomalous vapor sensor response of a fluorinated alkylthiol-protected gold nanoparticle film. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[402]  Fanli Meng,et al.  Novel capacitive sensor: Fabrication from carbon nanotube arrays and sensing property characterization , 2009 .

[403]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[404]  Jun Kameoka,et al.  Polymeric Nanowire Chemical Sensor , 2004 .

[405]  E. Dalcanale,et al.  Vacuum-Evaporated Cavitand Sensors: Dissecting Specific from Nonspecific Interactions in Ethanol Detection , 2008 .

[406]  J. Bargon,et al.  Organic Clathrate‐Forming Compounds as Highly Selective Sensor Coatings for the Gravimetric Detection of Solvent Vapors , 1993 .

[407]  E. Snow,et al.  Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. , 2005, Nano letters.

[408]  Jianbo Lu,et al.  Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors , 2009 .

[409]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[410]  E. Zellers,et al.  Dual-chemiresistor GC detector employing monolayer-protected metal nanocluster interfaces. , 2002, Analytical chemistry.

[411]  Kurt O. Wessendorf,et al.  The Lever oscillator for use in high resistance resonator applications , 1993, 1993 IEEE International Frequency Control Symposium.

[412]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[413]  T. Chinowsky,et al.  Optical Chemical Sensing Using Nematic Liquid Crystal , 2004 .

[414]  Kyeongjae Cho,et al.  Ab Initio Study of Doped Carbon Nanotube Sensors , 2003 .

[415]  Yun Zhang,et al.  Molecularly Imprinted Polymers as Recognition Elements in Sensors , 2012 .

[416]  Asim K. Ray,et al.  Impedance analysis of the thickness shear mode resonator for organic vapour sensing , 2004 .

[417]  A. Hierlemann,et al.  Higher-order Chemical Sensing , 2007 .

[418]  R. Paolesse,et al.  The exploitation of metalloporphyrins as chemically interactive material in chemical sensors , 1998 .

[419]  E. Massera,et al.  Filled Polysilsesquioxanes: A New Approach to Chemical Sensing , 2007 .

[420]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .

[421]  Cees Dekker,et al.  Nanotechnology: Carbon nanotubes with DNA recognition , 2002, Nature.

[422]  Pengfei Pang,et al.  Humidity effect on the monolayer-protected gold nanoparticles coated chemiresistor sensor for VOCs analysis. , 2005, Talanta.

[423]  Chang-Soo Kim,et al.  One-step fabrication of a polyaniline nanofiber vapor sensor , 2008 .

[424]  A. T. Johnson,et al.  Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm , 2003 .