The fractional contributions of elementary modes to the metabolism of Escherichia coli and their estimation from reaction entropies.

[1]  T. Kawasaki,et al.  Genetic mapping with a thiamine-requiring auxotroph of Escherichia coli K-12 defective in thiamine phosphate pyrophosphorylase , 1968, Journal of bacteriology.

[2]  S. J. Pirt,et al.  Principles of microbe and cell cultivation , 1975 .

[3]  W. Hempfling,et al.  Effects of growth temperature on yield and maintenance during glucose-limited continuous culture of Escherichia coli , 1976, Journal of bacteriology.

[4]  J. A. Roels,et al.  Energetics and Kinetics in Biotechnology , 1983 .

[5]  M. Heldal,et al.  X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria , 1985, Applied and environmental microbiology.

[6]  H. Westerhoff,et al.  Thermodynamics and Control of Biological Free-Energy Transduction , 1987 .

[7]  A. Steinbüchel,et al.  Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli , 1988, Journal of bacteriology.

[8]  V. Riis,et al.  Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis , 1988 .

[9]  A. Sinskey,et al.  Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). , 1989, The Journal of biological chemistry.

[10]  S. Sandler,et al.  On the thermodynamics of microbial growth processes , 1991, Biotechnology and bioengineering.

[11]  David Byrom Biomaterials: Novel Materials from Biological Sources , 1991 .

[12]  F. Srienc,et al.  Novel Methods to Synthesize Polyhydroxyalkanoates a , 1994, Annals of the New York Academy of Sciences.

[13]  H. Chang,et al.  STIMULATORY EFFECTS OF AMINO-ACIDS AND OLEIC-ACID ON POLY(3-HYDROXYBUTYRIC ACID) SYNTHESIS BY RECOMBINANT ESCHERICHIA-COLI , 1995 .

[14]  H. Valentin,et al.  Regulated expression of the Alcaligenes eutrophus pha biosynthesis genes in Escherichia coli , 1995, Applied and environmental microbiology.

[15]  F. Srienc,et al.  Production of heteropolymeric polyhydroxyalkanoate in Escherichia coli from a single carbon source. , 1996, International journal of biological macromolecules.

[16]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[17]  J. Liao,et al.  Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. , 1996, Biotechnology and bioengineering.

[18]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[19]  G. Cecchini,et al.  Anaerobic Expression of Escherichia coli Succinate Dehydrogenase: Functional Replacement of Fumarate Reductase in the Respiratory Chain during Anaerobic Growth , 1998, Journal of bacteriology.

[20]  F. Srienc,et al.  Metabolic modeling of polyhydroxybutyrate biosynthesis. , 1998, Biotechnology and bioengineering.

[21]  S. Lee,et al.  Cloning of the Alcaligenes latus Polyhydroxyalkanoate Biosynthesis Genes and Use of These Genes for Enhanced Production of Poly(3-hydroxybutyrate) in Escherichia coli , 1998, Applied and Environmental Microbiology.

[22]  S. Lee,et al.  High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. , 1998, Biotechnology and bioengineering.

[23]  J. Keasling,et al.  Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. , 1998, Biotechnology and bioengineering.

[24]  Anton P. J. Middelberg,et al.  Industrial production of polyhydroxyalkanoates using Escherichia coli: An economic analysis , 1998 .

[25]  G. Bennett,et al.  Metabolic flux analysis of Escherichia coli expressing the Bacillus subtilis acetolactate synthase in batch and continuous cultures. , 1999, Biotechnology and bioengineering.

[26]  U. Sauer,et al.  Metabolic Flux Ratio Analysis of Genetic and Environmental Modulations of Escherichia coli Central Carbon Metabolism , 1999, Journal of bacteriology.

[27]  Jae-Gu Pan,et al.  Homofermentative Production of d- orl-Lactate in Metabolically Engineered Escherichia coli RR1 , 1999, Applied and Environmental Microbiology.

[28]  Juan Carlos Nuño,et al.  METATOOL: for studying metabolic networks , 1999, Bioinform..

[29]  B. Snel,et al.  Pathway alignment: application to the comparative analysis of glycolytic enzymes. , 1999, The Biochemical journal.

[30]  D. Janssen,et al.  NADH‐Regulated Metabolic Model for Growth of Methylosinustrichosporium OB3b. Model Presentation, Parameter Estimation, and Model Validation , 2000, Biotechnology progress.

[31]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[32]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Sudesh,et al.  Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters , 2000 .

[34]  J. Edwards,et al.  Robustness Analysis of the Escherichiacoli Metabolic Network , 2000, Biotechnology progress.

[35]  T Horiuchi,et al.  Functional genomics of Escherichia coli in Japan. , 2000, Research in microbiology.

[36]  M. A. Eiteman,et al.  Metabolic Analysis of Escherichia coliin the Presence and Absence of the Carboxylating Enzymes Phosphoenolpyruvate Carboxylase and Pyruvate Carboxylase , 2000, Applied and Environmental Microbiology.

[37]  A. Burgard,et al.  Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. , 2001, Biotechnology and bioengineering.

[38]  S. Lee,et al.  Production of microbial polyester by fermentation of recombinant microorganisms. , 2001, Advances in biochemical engineering/biotechnology.

[39]  A. Middelberg,et al.  Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. , 2001, Biotechnology and bioengineering.

[40]  Y T Yang,et al.  The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. , 2001, Metabolic engineering.

[41]  G. Bennett,et al.  The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. , 2002, Metabolic engineering.

[42]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[43]  Friedrich Srienc,et al.  Metabolic pathway analysis of a recombinant yeast for rational strain development. , 2002, Biotechnology and bioengineering.

[44]  Steffen Klamt,et al.  Two approaches for metabolic pathway analysis? , 2003, Trends in biotechnology.

[45]  Jason A. Papin,et al.  Comparison of network-based pathway analysis methods. , 2004, Trends in biotechnology.

[46]  R. Carlson,et al.  Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions , 2004, Biotechnology and bioengineering.

[47]  R. Carlson,et al.  Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states , 2004, Biotechnology and bioengineering.

[48]  D. Fell,et al.  A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus. , 2004, Biotechnology and bioengineering.

[49]  Formate ion decomposition in water under UV irradiation at 253.7 nm. , 2004, Environmental science & technology.

[50]  H. Schlegel,et al.  Excretion of metabolites by hydrogen bacteria I. Autotrophic and heterotrophic fermentations , 1978, European journal of applied microbiology and biotechnology.

[51]  R. Carlson,et al.  Metabolic pathway structures for recombinant protein synthesis in Escherichia coli , 2005, Applied Microbiology and Biotechnology.

[52]  Friedrich Srienc,et al.  Kinetic Studies and Biochemical Pathway Analysis of Anaerobic Poly-(R)-3-Hydroxybutyric Acid Synthesis in Escherichia coli , 2005, Applied and Environmental Microbiology.

[53]  Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. , 2005, Journal of biotechnology.

[54]  R. Carlson,et al.  Design, construction and performance of the most efficient biomass producing E. coli bacterium. , 2006, Metabolic engineering.