Some unsteady aerodynamics relevant to insect-inspired flapping-wing micro air vehicles

Flapping-wing micro air vehicles, based on insect-like apping, could potentially ll a niche in the current market by o ering the ability to gather information from within buildings. The aerodynamics of insect-like apping are dominated by a large, lift-enhancing leading-edge vortex (LEV). Historically, the cause and structure of this vortex have been the subject of controversy. This thesis is primarily intended to provide insight into the LEV, using computational uid dynamics coupled with validating experiments. The problem is simpli ed by breaking down the complex kinematics involved in insect-like apping and examining only a part of these kinematics; rstly in 2D, before progressing to 3D sweeping wing motions. The thesis includes discussion of published literature in the eld, highlighting gaps and inconsistencies in the current knowledge. Among the contributions of this thesis are: descriptions of the e ects of changing Reynolds number and angle of attack for 2D and 3D ows; clari cation of terminology and phenomenology, particular in the context of 2D ows; and detailed descriptions of the development and structure of the LEV in both 2D and 3D cases, including discussion of Kelvin-Helmholtz instability. The issues of Strouhal number, delayed leading-edge separation, dynamic stall and the Wagner e ect are also considered. Generally, the LEV is shown to be unstable in 2D cases. However, in 3D cases the LEV is seen to be stable, even if Reynolds number is increased. The stability of the LEV is found to be critically dependent on wing aspect ratio.

[1]  T. Kármán,et al.  Airfoil Theory for Non-Uniform Motion , 1938 .

[2]  Mao Sun,et al.  Aerodynamic Force Generation in Hovering Flight in a Tiny Insect , 2006 .

[3]  H. Glauert The force and moment on an oscillating aerofoil , 1930 .

[4]  Jeffrey A. Walker,et al.  Rotational lift: something different or more of the same? , 2002, The Journal of experimental biology.

[5]  J. Marden Maximum Lift Production During Takeoff in Flying Animals , 1987 .

[6]  Mao Sun,et al.  Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. , 2002, The Journal of experimental biology.

[7]  M. Dickinson UNSTEADY MECHANISMS OF FORCE GENERATION IN AQUATIC AND AERIAL LOCOMOTION , 1996 .

[8]  M. Dickinson,et al.  The active control of wing rotation by Drosophila. , 1993, The Journal of experimental biology.

[9]  Norman Kai Wing Lee Evolution and structure of leading edge vortices over slender wings , 1991 .

[10]  A. Brodsky Vortex Formation in the Tethered Flight of the Peacock Butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some Aspects of Insect Flight Evolution , 1991 .

[11]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[12]  R. Mittal,et al.  Flutter, Tumble and Vortex Induced Autorotation , 2002 .

[13]  S. Mittal,et al.  Flow past a cylinder: shear layer instability and drag crisis , 2005 .

[14]  Adrian L. R. Thomas,et al.  FLOW VISUALIZATION AND UNSTEADY AERODYNAMICS IN THE FLIGHT OF THE HAWKMOTH, MANDUCA SEXTA , 1997 .

[15]  C. Ellington,et al.  The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. , 1997, The Journal of experimental biology.

[16]  Hao Liu,et al.  Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices , 2007 .

[17]  F. Prinz,et al.  The Mesicopter: A Meso-Scale Flight Vehicle NIAC Phase II Technical Proposal , 1999 .

[18]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[19]  L Prandtl,et al.  Motion of fluids with very little viscosity , 1928 .

[20]  T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the fling , 2007 .

[21]  Adrian L. R. Thomas,et al.  Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency , 2003, Nature.

[22]  Z. J. Wang,et al.  Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments , 2004, Journal of Experimental Biology.

[23]  Zhonglei Wei,et al.  Transition of separated shear layer from order to chaos , 1997 .

[24]  A. Lobanov,et al.  A Cosmic Double Helix in the Archetypical Quasar 3C273 , 2001, Science.

[25]  M. Dickinson,et al.  Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers , 2004, Journal of Experimental Biology.

[26]  W. J. Mccroskey,et al.  The Phenomenon of Dynamic Stall. , 1981 .

[27]  Mark B. Tischler,et al.  The Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing , 2001 .

[28]  Max F. Platzer,et al.  Improved Performance and Control of Flapping-Wing Propelled Micro Air Vehicles , 2004 .

[29]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[30]  D. Rempfer On Boundary Conditions for Incompressible Navier-Stokes Problems , 2006 .

[31]  S. Vogel Flight in Drosophila. II. Variations in stroke parameters and wing contour. , 1967, The Journal of experimental biology.

[32]  Matthew Thomas Scott Nonlinear airfoil-wake interaction in large amplitude unsteady flow , 1987 .

[33]  M. Dickinson,et al.  Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing , 2006 .

[34]  Ronald S. Fearing,et al.  High lift force with 275 Hz wing beat in MFI , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  C. T. Shaw,et al.  Using Computational Fluid Dynamics , 1992 .

[36]  Kazuhiro Kusunose,et al.  Prediction of transition location for a 2-D Navier-Stokes solver for multi-element airfoil configurations , 1994 .

[37]  Mao Sun,et al.  The influence of the wake of a flapping wing on the production of aerodynamic forces , 2005 .

[38]  Osamu Miyazawa,et al.  Nonintrusive techniques of inspections during the pre-launch phase of space vehicle , 2005, SPIE Defense + Commercial Sensing.

[39]  Rong Fung Huang,et al.  Surface flow and vortex shedding of an impulsively started wing , 2001, Journal of Fluid Mechanics.

[40]  S. Vogel Flight in Drosophila : III. Aerodynamic Characteristics of Fly Wing Sand Wing Models , 1967 .

[41]  O. Reynolds III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Proceedings of the Royal Society of London.

[42]  Francisco J. Serón,et al.  A comparison of segregated and coupled methods for the solution of the incompressible Navier-Stokes equations , 1996 .

[43]  Kevin Knowles,et al.  Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1: Methodology and analysis , 2006 .

[44]  Mao Sun,et al.  A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight , 2005, Journal of Experimental Biology.

[45]  Masaki Hamamoto,et al.  Application of fluid–structure interaction analysis to flapping flight of insects with deformable wings , 2007, Adv. Robotics.

[46]  T. Sarpkaya Vortex-Induced Oscillations: A Selective Review , 1979 .

[47]  J A Walker,et al.  Mechanical performance of aquatic rowing and flying , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[49]  T. Mueller,et al.  Laminar separation bubble characteristics on an airfoil at low Reynolds numbers , 1987 .

[50]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[51]  R. Loewy A Two-Dimensional Approximation to the Unsteady Aerodynamics of Rotary Wings , 1957 .

[52]  T. Loc,et al.  Further experiments on vortex formation around an oscillating and translating airfoil at large incidences , 1991, Journal of Fluid Mechanics.

[53]  D. Pierce,et al.  Photographic evidence of the formation and growth of vorticity behind plates accelerated from rest in still air , 1961, Journal of Fluid Mechanics.

[54]  V. Rossow Lift enhancement by an externally trapped vortex , 1978 .

[55]  T. Tavares,et al.  Perspective: Unsteady Wing Theory—The Kármán/Sears Legacy , 1993 .

[56]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[57]  C. Ellington The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis , 1984 .

[58]  A. Hedenström,et al.  Leading-Edge Vortex Improves Lift in Slow-Flying Bats , 2008, Science.

[59]  J. Usherwood,et al.  The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. , 2002, The Journal of experimental biology.

[60]  Yuan Lu,et al.  Dual leading-edge vortices on flapping wings , 2006, Journal of Experimental Biology.

[61]  Michael V. Ol,et al.  Leading-Edge Vortex Structure of Nonslender Delta Wings at Low Reynolds Number , 2003 .

[62]  Max Kramer Increase in the maximum lift of an airplane wing due to a sudden increase in its effective angle of attack resulting from a gust , 1932 .

[63]  Chun-Ming Gordon Lam,et al.  Nonlinear wake evolution of Joukowski aerofoils in severe maneuver , 1989 .

[64]  Julian F. Scott,et al.  An Introduction to Turbulent Flow , 2000 .

[65]  R. Zbikowski,et al.  Sensor-rich feedback control: a new paradigm for flight control inspired by insect agility , 2004, IEEE Instrumentation & Measurement Magazine.

[66]  Adrian L. R. Thomas,et al.  The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex , 2005, Journal of Experimental Biology.

[67]  M. Platzer,et al.  Flapping Wing Aerodynamics - Progress and Challenges , 2006 .

[68]  R Dudley,et al.  Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. , 1998, The Journal of experimental biology.

[69]  B. Mols. Flapping micro plane watches where it goes , 2005 .

[70]  Annie Dulieu,et al.  Vortex formation around an oscillating and translating airfoil at large incidences , 1990, Journal of Fluid Mechanics.

[71]  A. R. Ennos The kinematics and aerodynamics of the free flight of some diptera , 1989 .

[72]  J. Leishman,et al.  On the Influence of Time-Varying Flow Velocity on Unsteady Aerodynamics , 1994 .

[73]  Kevin Knowles,et al.  Investigation of aerodynamics relevant to flapping-wing micro air vehicles , 2007 .

[74]  M. Dickinson,et al.  UNSTEADY AERODYNAMIC PERFORMANCE OF MODEL WINGS AT LOW REYNOLDS NUMBERS , 1993 .

[75]  Chih-Ming Ho,et al.  Lift Force of Delta Wings , 1990 .

[76]  T. Maxworthy,et al.  The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing , 2007, Journal of Fluid Mechanics.

[77]  W. C. Reynolds,et al.  Review of Unsteady, Driven, Separated Flows , 1985 .

[78]  T. Tavares,et al.  Aerodynamics of maneuvering slender wings with leading-edge separation , 1993 .

[79]  R. Zbikowski On aerodynamic modelling of an insect–like flapping wing in hover for micro air vehicles , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[80]  Cs Ling,et al.  An insect-inspired micro air vehicle flapping mechanism , 2007 .

[81]  Jerry M Chen,et al.  Strouhal numbers of inclined flat plates , 1996 .

[82]  R. Morris The two-dimensional hydrodynamical theory of moving aerofoils-II , 1938, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences.

[83]  I. E. Garrick Propulsion of a flapping and oscillating airfoil , 1936 .

[84]  A. R. Ennos INERTIAL AND AERODYNAMIC TORQUES ON THE WINGS OF DIPTERA IN FLIGHT , 1989 .

[85]  Ismet Gursul,et al.  Review of Unsteady Vortex Flows over Slender Delta Wings , 2005 .

[86]  J. Gollub,et al.  Vortex Flow in Nature and Technology , 1985 .

[87]  M. Lighthill On the Weis-Fogh mechanism of lift generation , 1973, Journal of Fluid Mechanics.

[88]  J. Leishman,et al.  Phase-locked particle image velocimetry measurements of a flapping wing , 2006 .

[89]  J. Mccune,et al.  Nonlinear aerodynamics of two-dimensional airfoils in severe maneuver , 1988 .

[90]  Z. J. Wang,et al.  Unsteady forces on an accelerating plate and application to hovering insect flight , 2004, Journal of Fluid Mechanics.

[91]  F. Minotti Unsteady two-dimensional theory of a flapping wing. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  E. L. Houghton,et al.  Aerodynamics for Engineering Students , 1970 .

[93]  Shigeru Sunada,et al.  Airfoil Section Characteristics at a Low Reynolds Number , 1997 .

[94]  T. Mueller Aerodynamic Characteristics of Wings at Low Reynolds Number , 2001 .

[95]  C. Ellington Insects versus birds: the great divide , 2006 .

[96]  Rafał Żbikowski,et al.  Materials challenges in the design of an insect-like flapping wing mechanism based on a four-bar linkage , 2007 .

[97]  Morteza Gharib,et al.  Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae) , 2003, Journal of Experimental Biology.

[98]  H. Sakamoto,et al.  A STUDY ON VORTEX SHEDDING FROM SPHERES IN A UNIFORM FLOW , 1990 .

[99]  R. Dudley,et al.  Mechanics of Forward Flight in Bumblebees: II. QUASI-STEADY LIFT AND POWER REQUIREMENTS , 1990 .

[100]  K. Kawachi,et al.  A Numerical Study of Insect Flight , 1998 .

[101]  Florian R. Menter,et al.  Transition Modelling for General Purpose CFD Codes , 2006 .

[102]  M. Visbal,et al.  Computational and physical aspects of vortex breakdown on delta wings , 1995 .

[103]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[104]  A. Roshko On the development of turbulent wakes from vortex streets , 1953 .

[105]  Y. Shmyglevskii,et al.  On “vortex breakdown” , 1995 .

[106]  C. Ellington,et al.  The vortex wake of a ‘hovering’ model hawkmoth , 1997 .

[107]  Ron Barrett,et al.  Post-buckled precompressed piezoelectric flight control actuator design, development and demonstration , 2006 .

[108]  Kevin Knowles,et al.  Aerodynamic modelling of insect-like flapping flight for micro air vehicles , 2006 .

[109]  Jean Delery,et al.  Research into vortex breakdown control , 2001 .

[110]  Robert J. Wood,et al.  Lift force improvements for the micromechanical flying insect , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[111]  Richard E. Brown,et al.  Rotor Wake Modeling for Flight Dynamic Simulation of Helicopters , 2000 .

[112]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[113]  R. B. Srygley,et al.  Unconventional lift-generating mechanisms in free-flying butterflies , 2002, Nature.

[114]  T. Y. Wu On theoretical modeling of aquatic and aerial animal locomotion , 2002 .

[115]  Iain D. Boyd,et al.  Simulation of Gas Flow Over Micro-Scale Airfoils Using A Hybrid Continuum-Particle Approach , 2003 .

[116]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[117]  Dragos Viieru,et al.  Effects of Reynolds Number and Flapping Kinematics on Hovering Aerodynamics , 2007 .

[118]  Mao Sun,et al.  High-lift generation and power requirements of insect flight , 2005 .

[119]  Starting vortex and lift on an airfoil , 1993 .

[120]  J. Gibson,et al.  Investigation of Vortex Bursting at a Low Reynolds Number Using a Schlieren Visualization Scheme , 2022 .

[121]  C. Ellington Unsteady aerodynamics of insect flight. , 1995, Symposia of the Society for Experimental Biology.

[122]  C. Ellington The Aerodynamics of Hovering Insect Flight. II. Morphological Parameters , 1984 .

[123]  Mao Sun,et al.  A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering , 2004, Journal of Experimental Biology.

[124]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[125]  T. Weis-Fogh,et al.  Biology and physics of locust flight. I. Basic principles in insect flight. A critical review , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[126]  Jeffrey A. Walker,et al.  Kinematics, Dynamics, and Energetics of Rowing and Flapping Propulsion in Fishes1 , 2002, Integrative and comparative biology.

[127]  Thomas J. Mueller,et al.  Mesoscale Flight and Miniature Rotorcraft Development , 2001 .

[128]  Marta Braun,et al.  Picturing Time: The Work of Etienne-Jules Marey (1830-1904) , 1995 .

[129]  Rafal Zbikowski,et al.  Four-Bar Linkage Mechanism for Insectlike Flapping Wings in Hover: Concept and an Outline of Its Realization , 2005 .

[130]  Donald E. Gault,et al.  Examples of three representative types of airfoil-section stall at low speed , 1951 .

[131]  Stuart E. Rogers,et al.  Impulsive start of a symmetric airfoil at high angle of attack , 1995 .

[132]  Quanhua Sun,et al.  Flat-plate aerodynamics at very low Reynolds number , 2004, Journal of Fluid Mechanics.

[133]  C. Ellington The Aerodynamics of Hovering Insect Flight. VI. Lift and Power Requirements , 1984 .

[134]  C. A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By , 2002 .

[135]  M. V. Lowson,et al.  Vortex breakdown control by delta wing geometry , 1994 .

[136]  June-Yub Lee,et al.  Long Time Computation of Two-Dimensional Vortex Sheet by Point Vortex Method , 2003 .

[137]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[138]  Richard E. Brown,et al.  Efficient High-Resolution Wake Modeling Using the Vorticity Transport Equation , 2004 .

[139]  Akira Azuma,et al.  The Biokinetics of Flying and Swimming , 1992 .

[140]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[141]  S. Sunada,et al.  Approximate Added-Mass Method for Estimating Induced Power for Flapping Flight , 2000 .

[142]  Mao Sun,et al.  Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion , 2003, Journal of Experimental Biology.

[143]  Ellington,et al.  A computational fluid dynamic study of hawkmoth hovering , 1998, The Journal of experimental biology.

[144]  T. Mueller,et al.  Experimental Studies of Separation on a Two-Dimensional Airfoil at Low Reynolds Numbers , 1982 .

[145]  Z. J. Wang Vortex shedding and frequency selection in flapping flight , 2000, Journal of Fluid Mechanics.

[146]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[147]  F. Hollick The flight of the dipterous fly Muscina stabulans Fallén , 1940, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[148]  W. Tollmien,et al.  Über Flüssigkeitsbewegung bei sehr kleiner Reibung , 1961 .

[149]  Fei-Bin Hsiao,et al.  Aerodynamic performance and flow structure studies of a low Reynoldsnumber airfoil , 1989 .

[150]  Markys G. Cain,et al.  Characterisation of PZT thin film micro-actuators using a silicon micro-force sensor. , 2007 .

[151]  Adrian L. R. Thomas,et al.  Leading-edge vortices in insect flight , 1996, Nature.

[152]  R. E. Sheldahl,et al.  Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines , 1981 .

[153]  C. Ellington,et al.  The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth , 1997 .

[154]  Matthew T. Keennon,et al.  Development of the Black Widow Micro Air Vehicle , 2001 .

[155]  P. Wegener What Makes Airplanes Fly , 1991 .

[156]  L. Bennett Clap and Fling Aerodynamics-An Experimental Evaluation , 1977 .

[157]  C. Ellington The Aerodynamics of Hovering Insect Flight. IV. Aeorodynamic Mechanisms , 1984 .

[158]  B. A. Robinson,et al.  Simple Numerical Criterion for Vortex Breakdown , 1994 .

[159]  Lance W. Traub,et al.  Analysis and Estimation of the Lift Components of Hovering Insects , 2004 .

[160]  Yulii D. Shikhmurzaev,et al.  Fundamentals of fluid mechanics , 2007 .

[161]  M. Jensen Biology and physics of locust flight. III. The aerodynamics of locust flight , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[162]  C. Peskin,et al.  When vortices stick: an aerodynamic transition in tiny insect flight , 2004, Journal of Experimental Biology.

[163]  C. Ellington The novel aerodynamics of insect flight: applications to micro-air vehicles. , 1999, The Journal of experimental biology.

[164]  James A. Sethian,et al.  Vortex methods and vortex motion , 1991 .

[165]  F. Lehmann The mechanisms of lift enhancement in insect flight , 2004, Naturwissenschaften.

[166]  Hikaru Aono,et al.  Vortical Structure and Aerodynamics of Hawkmoth Hovering , 2006 .

[167]  Mao Sun,et al.  Dynamic flight stability of a hovering bumblebee , 2005, Journal of Experimental Biology.