Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells

[1]  Ayan A. Zhumekenov,et al.  Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbI3 Inverted Perovskite Solar Cells , 2020, ACS Energy Letters.

[2]  S. Mali,et al.  Simultaneous Improved Performance and Thermal Stability of Planar Metal Ion Incorporated CsPbI2Br All‐Inorganic Perovskite Solar Cells Based on MgZnO Nanocrystalline Electron Transporting Layer , 2019, Advanced Energy Materials.

[3]  T. Unold,et al.  The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells , 2019, Energy & Environmental Science.

[4]  A. Barker,et al.  Controlling competing photochemical reactions stabilizes perovskite solar cells , 2019, Nature Photonics.

[5]  J. Noh,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[6]  Jinsong Hu,et al.  Fully Air-Bladed High-Efficiency Perovskite Photovoltaics , 2019, Joule.

[7]  S. Mali,et al.  A Dual‐Retarded Reaction Processed Mixed‐Cation Perovskite Layer for High‐Efficiency Solar Cells , 2019, Advanced Functional Materials.

[8]  M. Grätzel,et al.  Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells , 2019, Joule.

[9]  Yongfang Li,et al.  Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells , 2019, Joule.

[10]  R. Schropp,et al.  Structurally Reconstructed CsPbI2Br Perovskite for Highly Stable and Square‐Centimeter All‐Inorganic Perovskite Solar Cells , 2018, Advanced Energy Materials.

[11]  Martin A. Green,et al.  Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells , 2018, Joule.

[12]  Wei Zhang,et al.  Inorganic CsPbI2 Br Perovskite Solar Cells: The Progress and Perspective , 2018, Solar RRL.

[13]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[14]  Q. Wang,et al.  Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81% , 2018, Nano Energy.

[15]  Yongli Gao,et al.  Highly Efficient, Solution-Processed CsPbI2Br Planar Heterojunction Perovskite Solar Cells via Flash Annealing , 2018, ACS Photonics.

[16]  Yang Yang,et al.  A Cryogenic Process for Antisolvent‐Free High‐Performance Perovskite Solar Cells , 2018, Advanced materials.

[17]  Zhike Liu,et al.  Precursor Engineering for All‐Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency , 2018, Advanced Functional Materials.

[18]  Q. Wang,et al.  Graded Bandgap CsPbI2+Br1− Perovskite Solar Cells with a Stabilized Efficiency of 14.4% , 2018, Joule.

[19]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[20]  Jun Chen,et al.  Reduced-Dimensional α-CsPbX3 Perovskites for Efficient and Stable Photovoltaics , 2018, Joule.

[21]  G. Cao,et al.  High-Voltage-Efficiency Inorganic Perovskite Solar Cells in a Wide Solution-Processing Window. , 2018, The journal of physical chemistry letters.

[22]  Z. Yin,et al.  Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells , 2018, Nature Communications.

[23]  Liyuan Han,et al.  Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber , 2018, Materials Today Energy.

[24]  Huicong Liu,et al.  The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbI3 for efficient carbon-based perovskite solar cells. , 2018, Nanoscale.

[25]  A. Ho-baillie,et al.  Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency , 2018 .

[26]  Kang L. Wang,et al.  Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbI2Br Solar Cells , 2018 .

[27]  Y. Mai,et al.  All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13. , 2018, Journal of the American Chemical Society.

[28]  Wasim J. Mir,et al.  Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? , 2018 .

[29]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[30]  Jinsong Huang,et al.  Thin single crystal perovskite solar cells to harvest below-bandgap light absorption , 2017, Nature Communications.

[31]  Ronn Andriessen,et al.  Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating , 2017, Solar Energy Materials and Solar Cells.

[32]  Yanrong Wang,et al.  CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. , 2017, Journal of the American Chemical Society.

[33]  M. Green,et al.  Strontium-Doped Low-Temperature-Processed CsPbI2Br Perovskite Solar Cells , 2017 .

[34]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[35]  Qingmin Ji,et al.  Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells , 2017 .

[36]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[37]  M. Green,et al.  Spin-coating free fabrication for highly efficient perovskite solar cells , 2017 .

[38]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[39]  Yang Yang,et al.  The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. , 2017, Nano letters.

[40]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[41]  S. H. Park,et al.  Effective hot-air annealing for improving the performance of perovskite solar cells , 2017 .

[42]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[43]  Maximilian T. Hörantner,et al.  Inducing swift nucleation morphology control for efficient planar perovskite solar cells by hot-air quenching , 2017 .

[44]  Su-Huai Wei,et al.  Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. , 2017, Journal of the American Chemical Society.

[45]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[46]  Seok‐In Na,et al.  Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting , 2017 .

[47]  Gao Lili,et al.  Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air , 2017 .

[48]  Jizheng Wang,et al.  Detecting trap states in planar PbS colloidal quantum dot solar cells , 2016, Scientific Reports.

[49]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[50]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[51]  Yanhong Luo,et al.  Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell , 2016 .

[52]  Lin Sun,et al.  Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[53]  N. Zheng,et al.  Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films. , 2016, Journal of the American Chemical Society.

[54]  Liyuan Han,et al.  Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells , 2016 .

[55]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[56]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[57]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[58]  Yang Yang,et al.  Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. , 2016, Nano letters.

[59]  Nam-Gyu Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[60]  J. Switzer,et al.  Epitaxial Electrodeposition of Methylammonium Lead Iodide Perovskites , 2016 .

[61]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[62]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[63]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[64]  M. Nazeeruddin,et al.  Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells. , 2015, The journal of physical chemistry letters.

[65]  Yaohua Mai,et al.  Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. , 2015, Journal of the American Chemical Society.

[66]  Shihe Yang,et al.  A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells , 2015 .

[67]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[68]  Wei Zhang,et al.  Optical properties and limiting photocurrent of thin-film perovskite solar cells , 2015 .

[69]  Noel Clark,et al.  3D Printer Based Slot‐Die Coater as a Lab‐to‐Fab Translation Tool for Solution‐Processed Solar Cells , 2015 .

[70]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[71]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[72]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[73]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[74]  P. Lund,et al.  Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[75]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[76]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[77]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[78]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[79]  Yves Engelborghs,et al.  The Correct Use of “Average” Fluorescence Parameters , 1998 .

[80]  Hwang,et al.  Lattice effects on the magnetoresistance in doped LaMnO3. , 1995, Physical review letters.

[81]  E. Sargent,et al.  The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance , 2018, Advanced materials.