Synchronization processes in complex networks

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  A. Winfree The geometry of biological time , 1991 .

[3]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[4]  John Scott What is social network analysis , 2010 .

[5]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[6]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[7]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  S. Strogatz Exploring complex networks , 2001, Nature.

[9]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[10]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[11]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[12]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[13]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[14]  Peter Saunders The geometry of biological time (2nd edn), by Arthur T. Winfree. Pp. 777. £46.50. 2001 ISBN 0 387 98992 7 (Springer). , 2002, The Mathematical Gazette.

[15]  G. Bianconi,et al.  Number of loops of size h in growing scale-free networks. , 2002, Physical review letters.

[16]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[17]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[20]  S. Wuchty,et al.  Evolutionary cores of domain co-occurrence networks , 2005, BMC Evolutionary Biology.

[21]  M. A. Muñoz,et al.  Journal of Statistical Mechanics: An IOP and SISSA journal Theory and Experiment Detecting network communities: a new systematic and efficient algorithm , 2004 .

[22]  Yamir Moreno,et al.  Fitness for synchronization of network motifs , 2004, cond-mat/0404054.

[23]  Beom Jun Kim,et al.  Factors that predict better synchronizability on complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[25]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[27]  J. Kurths,et al.  Network synchronization, diffusion, and the paradox of heterogeneity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[30]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[32]  E Oh,et al.  Modular synchronization in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  S. Boccaletti,et al.  Synchronization is enhanced in weighted complex networks. , 2005, Physical review letters.

[34]  G. Caldarelli,et al.  Detecting communities in large networks , 2004, cond-mat/0402499.

[35]  M. A. Muñoz,et al.  Entangled networks, synchronization, and optimal network topology. , 2005, Physical review letters.

[36]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[37]  Deok-Sun Lee Synchronization transition in scale-free networks: clusters of synchrony. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Jürgen Jost,et al.  Synchronization of networks with prescribed degree distributions , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Edward Ott,et al.  Synchronization in large directed networks of coupled phase oscillators. , 2005, Chaos.

[41]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[42]  S. Strogatz,et al.  The size of the sync basin. , 2006, Chaos.

[43]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[44]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .