A discrete duality finite volume discretization of the vorticity‐velocity‐pressure stokes problem on almost arbitrary two‐dimensional grids
暂无分享,去创建一个
[1] K. Domelevo,et al. Discrete-Duality Finite Volume Method for Second Order Elliptic Problems , 2005 .
[2] Sébastien Heib. Nouvelles discrétisations non structurées pour des écoulements de fluides à incompressibilité renforcée , 2003 .
[3] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[4] F. Hermeline,et al. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .
[5] F. Boyer,et al. Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .
[6] M. M. J. Proot,et al. Least-squares spectral elements applied to the Stokes problem , 2002 .
[7] F. Dubois,et al. Vorticity–velocity-pressure and stream function-vorticity formulations for the Stokes problem , 2003 .
[8] Gianmarco Manzini,et al. The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..
[9] F. Dubois,et al. First vorticity-velocity-pressure numerical scheme for the Stokes problem , 2003 .
[10] R. Verfürth,et al. Error estimates for some quasi-interpolation operators , 1999 .
[11] Christine Bernardi,et al. Spectral discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes equations , 2006, Numerische Mathematik.
[12] Claire Chainais-Hillairet,et al. Discrete duality finite volume schemes for two‐dimensional drift‐diffusion and energy‐transport models , 2009 .
[13] F. Hermeline,et al. A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .
[14] C. Carstensen,et al. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .
[15] Pascal Omnes,et al. A finite volume method for the approximation of Maxwell's equations in two space dimensions on arbitrary meshes , 2008, J. Comput. Phys..
[16] David Trujillo,et al. Vorticity–velocity–pressure formulation for Navier–Stokes equations , 2004 .
[17] V. Girault,et al. Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in ³ , 1988 .
[18] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[19] Sarah Delcourte. DEVELOPPEMENT DE METHODES DE VOLUMES FINIS POUR LA MECANIQUE DES FLUIDES , 2007 .
[20] Raphaèle Herbin,et al. Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ON A STABILIZED COLOCATED FINITE VOLUME SCHEME FOR THE , 2013 .
[21] Stella Krell. Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes , 2011 .
[22] Stanimire Tomov,et al. Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..
[23] R. EYMARD,et al. Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier-Stokes Equations on General 2D or 3D Meshes , 2007, SIAM J. Numer. Anal..
[24] Yves Coudière,et al. A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations , 2009, SIAM J. Sci. Comput..
[25] Gianmarco Manzini,et al. The Discrete Duality Finite Volume Method for Stokes Equations on Three-Dimensional Polyhedral Meshes , 2012, SIAM J. Numer. Anal..
[26] Olivier Pironneau,et al. A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression , 1987 .
[27] François Dubois,et al. Vorticity–velocity–pressure formulation for the Stokes problem , 2002 .
[28] Pascal Omnes,et al. A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .
[29] Franck Boyer,et al. Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..
[30] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[31] Raphaèle Herbin,et al. A staggered finite volume scheme on general meshes for the generalized Stokes problem in two space dimensions AstaggeredschemefortheStokesequations , 2005 .
[32] Stella Krell. STABILIZED DDFV SCHEMES FOR STOKES PROBLEM , 2009 .
[33] P. Omnes,et al. DISCRETE POINCAR ´E INEQUALITIES FOR ARBITRARY MESHES IN THE DISCRETE DUALITY FINITE VOLUME CONTEXT , 2012 .
[34] M. Bercovier,et al. A finite element for the numerical solution of viscous incompressible flows , 1979 .
[35] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[36] Raphaèle Herbin,et al. A staggered finite volume scheme on general meshes for the Navier-Stokes equations in two space dimensions , 2005 .
[37] Y. Coudière,et al. A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation , 2009 .
[38] Pascal Omnes,et al. A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes , 2007, SIAM J. Numer. Anal..
[39] V. Girault,et al. Incompressible Finite Element Methods for Navier-Stokes Equations with Nonstandard Boundary Conditions in R 3 , 1988 .
[40] Hyam Abboud,et al. A priori and a posteriori estimates for three‐dimensional Stokes equations with nonstandard boundary conditions , 2012 .
[41] Kenneth H. Karlsen,et al. Convergence of discrete duality finite volume schemes for the cardiac bidomain model , 2010, Networks Heterog. Media.
[42] Christine Bernardi,et al. Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..
[43] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[44] More pressure in the finite element discretization of the stokes problem , 2000 .