A discrete duality finite volume discretization of the vorticity‐velocity‐pressure stokes problem on almost arbitrary two‐dimensional grids

We present an application of the discrete duality finite volume method to the numerical approximation of the vorticity-velocity-pressure formulation of the two-dimensional Stokes equations, associated to various nonstandard boundary conditions. The finite volume method is based on the use of discrete differential operators obeying some discrete duality principles. The scheme may be seen as an extension of the classical Marker and Cell scheme to almost arbitrary meshes, thanks to an appropriate choice of degrees of freedom. The efficiency of the scheme is illustrated by numerical examples over unstructured triangular and locally refined nonconforming meshes, which confirm the theoretical convergence analysis led in the article. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1–30, 2015

[1]  K. Domelevo,et al.  Discrete-Duality Finite Volume Method for Second Order Elliptic Problems , 2005 .

[2]  Sébastien Heib Nouvelles discrétisations non structurées pour des écoulements de fluides à incompressibilité renforcée , 2003 .

[3]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[4]  F. Hermeline,et al.  Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .

[5]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[6]  M. M. J. Proot,et al.  Least-squares spectral elements applied to the Stokes problem , 2002 .

[7]  F. Dubois,et al.  Vorticity–velocity-pressure and stream function-vorticity formulations for the Stokes problem , 2003 .

[8]  Gianmarco Manzini,et al.  The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..

[9]  F. Dubois,et al.  First vorticity-velocity-pressure numerical scheme for the Stokes problem , 2003 .

[10]  R. Verfürth,et al.  Error estimates for some quasi-interpolation operators , 1999 .

[11]  Christine Bernardi,et al.  Spectral discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes equations , 2006, Numerische Mathematik.

[12]  Claire Chainais-Hillairet,et al.  Discrete duality finite volume schemes for two‐dimensional drift‐diffusion and energy‐transport models , 2009 .

[13]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[14]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[15]  Pascal Omnes,et al.  A finite volume method for the approximation of Maxwell's equations in two space dimensions on arbitrary meshes , 2008, J. Comput. Phys..

[16]  David Trujillo,et al.  Vorticity–velocity–pressure formulation for Navier–Stokes equations , 2004 .

[17]  V. Girault,et al.  Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in ³ , 1988 .

[18]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[19]  Sarah Delcourte DEVELOPPEMENT DE METHODES DE VOLUMES FINIS POUR LA MECANIQUE DES FLUIDES , 2007 .

[20]  Raphaèle Herbin,et al.  Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ON A STABILIZED COLOCATED FINITE VOLUME SCHEME FOR THE , 2013 .

[21]  Stella Krell Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes , 2011 .

[22]  Stanimire Tomov,et al.  Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..

[23]  R. EYMARD,et al.  Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier-Stokes Equations on General 2D or 3D Meshes , 2007, SIAM J. Numer. Anal..

[24]  Yves Coudière,et al.  A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations , 2009, SIAM J. Sci. Comput..

[25]  Gianmarco Manzini,et al.  The Discrete Duality Finite Volume Method for Stokes Equations on Three-Dimensional Polyhedral Meshes , 2012, SIAM J. Numer. Anal..

[26]  Olivier Pironneau,et al.  A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression , 1987 .

[27]  François Dubois,et al.  Vorticity–velocity–pressure formulation for the Stokes problem , 2002 .

[28]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[29]  Franck Boyer,et al.  Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..

[30]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[31]  Raphaèle Herbin,et al.  A staggered finite volume scheme on general meshes for the generalized Stokes problem in two space dimensions AstaggeredschemefortheStokesequations , 2005 .

[32]  Stella Krell STABILIZED DDFV SCHEMES FOR STOKES PROBLEM , 2009 .

[33]  P. Omnes,et al.  DISCRETE POINCAR ´E INEQUALITIES FOR ARBITRARY MESHES IN THE DISCRETE DUALITY FINITE VOLUME CONTEXT , 2012 .

[34]  M. Bercovier,et al.  A finite element for the numerical solution of viscous incompressible flows , 1979 .

[35]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[36]  Raphaèle Herbin,et al.  A staggered finite volume scheme on general meshes for the Navier-Stokes equations in two space dimensions , 2005 .

[37]  Y. Coudière,et al.  A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation , 2009 .

[38]  Pascal Omnes,et al.  A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes , 2007, SIAM J. Numer. Anal..

[39]  V. Girault,et al.  Incompressible Finite Element Methods for Navier-Stokes Equations with Nonstandard Boundary Conditions in R 3 , 1988 .

[40]  Hyam Abboud,et al.  A priori and a posteriori estimates for three‐dimensional Stokes equations with nonstandard boundary conditions , 2012 .

[41]  Kenneth H. Karlsen,et al.  Convergence of discrete duality finite volume schemes for the cardiac bidomain model , 2010, Networks Heterog. Media.

[42]  Christine Bernardi,et al.  Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..

[43]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[44]  More pressure in the finite element discretization of the stokes problem , 2000 .