A Proof of the Security of Quantum Key Distribution

[1]  G. Brassard,et al.  Quantum cryptography via parametric downconversion , 1999, quant-ph/9906074.

[2]  G. Brassard,et al.  Security of Quantum Key Distribution against All Collective Attacks , 1998, Algorithmica.

[3]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[4]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[5]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[6]  Wolfgang Tittel,et al.  Practical Aspects of Quantum Cryptographic Key Distribution , 2000, Journal of Cryptology.

[7]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[8]  G. Brassard,et al.  Security aspects of practical quantum cryptography , 1999, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[9]  T. Mor Quantum memory in quantum cryptography , 1999, quant-ph/9906073.

[10]  Hoi-Kwong Lo,et al.  A simple proof of the unconditional security of quantum key distribution , 1999, ArXiv.

[11]  H. Chau,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1998, Science.

[12]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[13]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[14]  N. Gisin,et al.  OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY. I. INFORMATION BOUND AND OPTIMAL STRATEGY , 1997 .

[15]  N. Gisin,et al.  Optimal Eavesdropping in Quantum Cryptography. I , 1997, quant-ph/9701039.

[16]  E. Biham,et al.  Security of Quantum Cryptography against Collective Attacks , 1996, quant-ph/9605007.

[17]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[18]  T. Mor Reducing Quantum Errors and Improving Large Scale Quantum Cryptography , 1996, quant-ph/9608025.

[19]  D. Mayers Quantum Key Distribution and String Oblivious Transfer in Noisy Channels , 1996, CRYPTO.

[20]  E. Biham,et al.  Bounds on Information and the Security of Quantum Cryptography , 1996, quant-ph/9605010.

[21]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[22]  Bennett,et al.  Parity bit in quantum cryptography. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[24]  Dominic Mayers,et al.  On the Security of the Quantum Oblivious Transfer and Key Distribution Protocols , 1995, CRYPTO.

[25]  Andrew Chi-Chih Yao,et al.  Security of quantum protocols against coherent measurements , 1995, STOC '95.

[26]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[27]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[28]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[29]  C. Crépeau,et al.  A quantum bit commitment scheme provably unbreakable by both parties , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[30]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[31]  Physical Review Letters 63 , 1989 .

[32]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[33]  P. Billingsley,et al.  Probability and Measure , 1980 .

[34]  E. B. Davies,et al.  Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.

[35]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[36]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[37]  W. Hoeffding Probability inequalities for sum of bounded random variables , 1963 .