Dilution effects in spin 7/2 systems. The case of the antiferromagnet GdRhIn5

•The magnetic properties of the Gd1−xLaxRhIn5(x≤0.50) AFM compounds are discussed.•GdRhIn5 can be modelled by a J=7/2 Heisenberg model on a cubic lattice.•For x≠0, weak disorder can be described through a distribution of transition T.•For larger x, results are not compatible with a classical spin Heisenberg model.•This is a simple 4f (L=0) AFM system for the study of disorder and short range order.

[1]  R. W. Hill,et al.  Unpaired electrons in the heavy-fermion superconductor CeCoIn5. , 2005, Physical review letters.

[2]  H. Nakashima,et al.  Unique Magnetic Properties of NdRhIn5, TbRhIn5, DyRhIn5, and HoRhIn5 , 2006 .

[3]  V. Correa,et al.  Anisotropic manifestation of short-range magnetic correlations in Ce0.6La0.4RhIn5 , 2004 .

[4]  V. Sidorov,et al.  Tuning the pressure-induced superconducting phase in doped CeRhIn5. , 2008, Physical review letters.

[5]  Z. Fisk,et al.  Ce-site dilution studies in the antiferromagnetic heavy fermions Ce m Rh n In 3 m + 2 n ( m = 1 , 2 ; n = 0 , 1 ) , 2002 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Stefan Wessel,et al.  Generalized directed loop method for quantum Monte Carlo simulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Tim Holland,et al.  Unit cell refinement from powder diffraction data: the use of regression diagnostics , 1997, Mineralogical Magazine.

[9]  Percolation quantum phase transitions in diluted magnets. , 2005, Physical review letters.

[10]  Sakamoto,et al.  Percolation in two-dimensional lattices. I. A technique for the estimation of thresholds. , 1989, Physical review. B, Condensed matter.

[11]  Quantum phase transition of the randomly diluted heisenberg antiferromagnet on a square lattice , 1999, Physical review letters.

[12]  A. R. Mackintosh,et al.  Rare Earth Magnetism: Structures and Excitations , 1991 .

[13]  A. Sandvik Stochastic series expansion method with operator-loop update , 1999, cond-mat/9902226.

[14]  L. J. Jongh Static Thermodynamic Properties of Site-Random Magnetic Systems and the Percolation Problem , 1983 .

[15]  S. Blundell Magnetism in Condensed Matter , 2001 .

[16]  T. Vojta Quantum Griffiths Effects and Smeared Phase Transitions in Metals: Theory and Experiment , 2010, 1005.2707.

[17]  C. Adriano,et al.  La-dilution effects in antiferromagnetic TbRhIn5 single crystals , 2009 .

[18]  C. Adriano,et al.  Doping effects on the magnetic properties of NdRhIn5 intermetallic antiferromagnet , 2009 .

[19]  J. Thompson,et al.  Evolution of the magnetic properties and magnetic structures along the RmMIn3m+2 (R=Ce, Nd, Gd, Tb; M=Rh, Ir; and m=1,2) series of intermetallic compounds , 2006 .

[20]  J. Thompson,et al.  Crystal structure and low-temperature magnetic properties of R m M In 3 m + 2 compounds ( M =Rh or Ir; m =1,2; R =Sm or Gd) , 2001 .

[21]  Optimal Monte Carlo updating. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Z. Fisk,et al.  Intersite coupling effects in a kondo lattice. , 2002, Physical review letters.

[23]  G. Aeppli,et al.  Anisotropic three-dimensional magnetic fluctuations in heavy fermion CeRhIn5 , 2001, cond-mat/0102503.

[24]  Thomas Vojta,et al.  TOPICAL REVIEW: Rare region effects at classical, quantum and nonequilibrium phase transitions , 2006 .

[25]  J. Sarrao,et al.  Superconductivity in Cerium- and Plutonium-Based '115' Materials( Frontiers of Novel Superconductivity in Heavy Fermion Compounds) , 2007 .