On extracting information implied in options

Options are financial instruments with a payoff depending on future states of the underlying asset. Therefore option markets contain information about expectations of the market participants about market conditions, e.g. current uncertainty on the market and corresponding risk. A standard measure of risk calculated from plain vanilla options is the implied volatility (IV). IV can be understood as an estimate of the volatility of returns in future period. Another concept based on the option markets is the state-price density (SPD) that is a density of the future states of the underlying asset. From raw data we can recover the IV function by nonparametric smoothing methods. Smoothed IV estimated by standard techniques may lead to a non-positive SPD which violates no arbitrage criteria. In this paper, we combine the IV smoothing with SPD estimation in order to correct these problems. We propose to use the local polynomial smoothing technique. The elegance of this approach is that it yields all quantities needed to calculate the corresponding SPD. Our approach operates only on the IVs—a major improvement comparing to the earlier multi-step approaches moving through the Black–Scholes formula from the prices to IVs and vice-versa.

[1]  Oliver Brockhaus,et al.  Equity Derivatives and Market Risk Models , 2000 .

[2]  R. Edwards,et al.  Technical Analysis of Stock Trends , 1966 .

[3]  W. Härdle Applied Nonparametric Regression , 1992 .

[4]  Ludger Hentschel,et al.  Errors in Implied Volatility Estimation , 2003, Journal of Financial and Quantitative Analysis.

[5]  Mark Britten-Jones,et al.  Option Prices, Implied Price Processes, and Stochastic Volatility , 2000 .

[6]  W. Härdle Applied Nonparametric Regression , 1991 .

[7]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[8]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .

[9]  Riccardo Rebonato Volatility and Correlation , 2004 .

[10]  Matthias R. Fengler Semiparametric Modeling of Implied Volatility , 2005 .

[11]  J. Jackwerth Option-Implied Risk-Neutral Distributions and Risk Aversion , 2004 .

[12]  Wolfgang K. Härdle,et al.  The Dynamics of Implied Volatilities: A Common Principal Components Approach , 2003 .

[13]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[14]  L. Clewlow,et al.  The Dynamics of Implied Volatility Surfaces , 1998 .

[15]  Stylianos Perrakis,et al.  Option Pricing: Real and Risk-Neutral Distributions , 2005 .

[16]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[17]  Matthias R. Fengler,et al.  Implied Volatility String Dynamics , 2003 .

[18]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[19]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[20]  Elli Gifford Technical Analysis of the Futures Markets , 1990 .

[21]  Wolfgang Härdle,et al.  Common factors governing VDAX movements and the maximum loss , 2002 .

[22]  R. Hafner,et al.  Arbitrage-free estimation of the risk-neutral density from the implied volatility smile , 2002 .

[23]  Alois Kneip,et al.  Common Functional Principal Components , 2006 .

[24]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[25]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[26]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .