Interfacing native and non-native peptides: using Affimers to recognise α-helix mimicking foldamers.

Selection methods are used to identify Affimers that recognise α-helix mimicking N-alkylated aromatic oligoamides thus demonstrating foldamer and natural α-amino acid codes are compatible.

[1]  Luc Brunsveld,et al.  Combining supramolecular chemistry with biology. , 2010, Chemical Society reviews.

[2]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[3]  Hayyoung Lee,et al.  Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker , 2016, Nature Communications.

[4]  M. McPherson,et al.  Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis† †Electronic supplementary information (ESI) available: Detailed experimental methods, supporting experimental data, and details of the molecular dynamics study. See DOI: 10.1039/c5sc01472g , 2015, Chemical science.

[5]  Elizabeth H C Bromley,et al.  Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. , 2008, ACS chemical biology.

[6]  Erinna F. Lee,et al.  α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells. , 2015, Journal of the American Chemical Society.

[7]  J. Clayden,et al.  Dynamic foldamer chemistry. , 2016, Chemical communications.

[8]  A. Breeze,et al.  Towards “bionic” proteins: replacement of continuous sequences from HIF-1α with proteomimetics to create functional p300 binding HIF-1α mimics† †Electronic supplementary information (ESI) available: Detailed experimental procedures and characterisation; additional biophysical data. See DOI: 10.1039/ , 2016, Chemical communications.

[9]  Andrew J. Wilson,et al.  Microwave assisted solid phase synthesis of highly functionalized N-alkylated oligobenzamide α-helix mimetics. , 2013, Bioorganic & medicinal chemistry.

[10]  S. Gellman,et al.  Structural consequences of beta-amino acid preorganization in a self-assembling alpha/beta-peptide: fundamental studies of foldameric helix bundles. , 2010, Journal of the American Chemical Society.

[11]  D. Baker,et al.  Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces , 2015, Science.

[12]  S. Warriner,et al.  Stereocontrolled protein surface recognition using chiral oligoamide proteomimetic foldamers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03559c Click here for additional data file. , 2015, Chemical science.

[13]  M. McPherson,et al.  Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity , 2016, Biosensors & bioelectronics.

[14]  A. Grélard,et al.  Helix-Rod Host-Guest Complexes with Shuttling Rates Much Faster than Disassembly , 2011, Science.

[15]  J. Toulmé,et al.  Deciphering aromatic oligoamide foldamer-DNA interactions. , 2012, Angewandte Chemie.

[16]  R. Raines,et al.  Protein prosthesis: 1,5-disubstituted[1,2,3]triazoles as cis-peptide bond surrogates. , 2007, Journal of the American Chemical Society.

[17]  W. S. Horne,et al.  Protein-like tertiary folding behavior from heterogeneous backbones. , 2013, Journal of the American Chemical Society.

[18]  M. Lorch,et al.  Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer , 2016, Science.

[19]  K. Kirshenbaum,et al.  Biosynthesis of Proteins Incorporating a Versatile Set of Phenylalanine Analogues , 2002, Chembiochem : a European journal of chemical biology.

[20]  M. Crisma,et al.  Helical Foldamers Incorporating Photoswitchable Residues for Light-Mediated Modulation of Conformational Preference. , 2016, Journal of the American Chemical Society.

[21]  A. Schepartz,et al.  Design and high-resolution structure of a β³-peptide bundle catalyst. , 2014, Journal of the American Chemical Society.

[22]  Andrew J. Wilson,et al.  Inhibition of α-helix-mediated protein-protein interactions using designed molecules. , 2013, Nature chemistry.

[23]  David J. Yeo,et al.  Orthogonal functionalisation of α-helix mimetics† †Electronic supplementary information (ESI) available: Additional binding data and fluorescence characterisation. Experimental procedures and characterisation of all new compounds. See DOI: 10.1039/c4ob00915k Click here for additional data file. , 2014, Organic & biomolecular chemistry.

[24]  R. Raines,et al.  Protein Prosthesis: A Semisynthetic Enzyme with a β-Peptide Reverse Turn , 2002 .

[25]  W. S. Horne,et al.  Peptide Backbone Composition and Protease Susceptibility: Impact of Modification Type, Position, and Tandem Substitution , 2016, Chembiochem : a European journal of chemical biology.

[26]  T. Brewer,et al.  In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics , 2014, Proceedings of the National Academy of Sciences.

[27]  Andrew J. Wilson,et al.  Selective and Potent Proteomimetic Inhibitors of Intracellular Protein–Protein Interactions** , 2015, Angewandte Chemie.

[28]  Richard B. Sessions,et al.  Computational design of water-soluble α-helical barrels , 2014, Science.

[29]  Derek N. Woolfson,et al.  Installing hydrolytic activity into a completely de novo protein framework. , 2016, Nature chemistry.

[30]  R. Raines,et al.  Protein prosthesis: a nonnatural residue accelerates folding and increases stability. , 2003, Journal of the American Chemical Society.

[31]  M. McPherson,et al.  Antibody mimetic receptor proteins for label-free biosensors. , 2015, The Analyst.

[32]  D. Baker,et al.  High thermodynamic stability of parametrically designed helical bundles , 2014, Science.

[33]  D. Seebach,et al.  Artificial chemokines: combining chemistry and molecular biology for the elucidation of interleukin-8 functionality. , 2008, Journal of the American Chemical Society.

[34]  I. Huc,et al.  Cascading transformations within a dynamic self-assembled system. , 2010, Nature chemistry.

[35]  A. Breeze,et al.  Exploration of the HIF-1α/p300 interface using peptide and Adhiron phage display technologies. , 2015, Molecular bioSystems.

[36]  R. Owens,et al.  Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications , 2014, Protein engineering, design & selection : PEDS.

[37]  Robert A. Langan,et al.  De novo design of protein homo-oligomers with modular hydrogen-bond network–mediated specificity , 2016, Science.

[38]  A. Hamilton,et al.  Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an alpha-helix. , 2001, Journal of the American Chemical Society.

[39]  S. Warriner,et al.  N-alkylated oligoamide alpha-helical proteomimetics. , 2010, Organic & biomolecular chemistry.

[40]  N. Linden,et al.  Self-Assembling Cages from Coiled-Coil Peptide Modules , 2013, Science.